Rod Type Series LEY /Size: 16, 25, 32, 40

Control of intermediate positioning and pushing is possible. High precision with ball screws (Positioning repeatability: $\pm 0.02 \mathrm{~mm}$)

In-line motor type Height dimension shortened by up to 49\%

A Dimension
mm]

Size	In-line motor	Motor top mounting
$\mathbf{1 6}$	$\mathbf{3 5 . 5}$	67.5
$\mathbf{2 5}$	$\mathbf{4 6 . 5}$	92
$\mathbf{3 2 , 4 0}$	$\mathbf{6 1}$	118

AC Servo Motor Type

Rod Type Series LEY／Size：25，32， 63

－High output motor（100／200／400 W）
－Improved high speed transfer ability
－High acceleration／deceleration compatible（ $5000 \mathrm{~mm} / \mathrm{s}^{2}$ ）
－Pulse input／CC－Link direct input／SSCNET III types
－With internal absolute encoder
＊Incremental encoder can also be selected．
－Positioning repeatability $\pm 0.01 \mathrm{~mm}$（High precision type）

$\mathrm{m} / \mathrm{s}^{2}$ ）

$$
\text { Positioning repeatability } \pm 0.01 \mathrm{~mm} \text { (High precision type) }
$$

Rod type／In－line motor type

Large bore size 63

Motor mounting position can be selected from 4 directions！

－Max．work load（kg）

	Top／Parallel	In－line
Horizontal	$\mathbf{2 0 0}$	80
Vertical	$\mathbf{1 1 5}$	72

－Max．pushing force（ N ）

Top／Parallel	3343
In－line	1910

－High output motor： 400 w －Max．speed： 1000 mm／s
＊ 500 mm stroke
－Dust－tight／Water－jet－proof
（IP65 equivalent）

出華

Compact integrated guide rods Lateral load resistance and high non-rotating accuracy

- Sliding bearing
 Suitable for lateral load applications such as a stopper where impact is applied
 - Ball bushing bearing Smooth operation suitable for pusher and lifter
 Improved rigidity

Compatible with sliding bearing and ball bushing bearing

Lateral end load: 5 times more*

* Compared with rod type, size 25 and 100 mm stroke

Non-rotating accuracy improved by using two guide rods

AC Servo Motor Type

Guide Rod Type Series LEYG /Size: 25, 32

For use of auto switches for the guide rod type LEYG series, refer to page 296.

DustrightWaier.jetproof (IP65 Equivalenti)

Enclosure: IP65 equivalent -Max. stroke: 500 mm*

* For size 32

Servo Motor (24 VDC) Type

LEY-X5 (Refer to page 223.)
AC Servo Motor (100/200 W) Type

Electric Actuator/Rod Type Series LEY

Step Motor (Servo/24 VDC) Servo Motor (24 VDC)	
ORod Type Series LEY	
Model Selection	Page 213
How to Order	Page 229
Specifications	Page 231
Construction	Page 233
Dimensions	Page 235
Accessory Mounting Brackets	Page 241
Auto Switch	Page 243
ORod Type LEY-X5 DustrighiWaierjetproof (lP65 Equivalent)	
Model Selection	Page 219
How to Order	Page 477
Specifications	Page 479
Construction	Page 481
Dimensions	Page 482
Auto Switch	Page 498

©Rod Type Series LEY Size 25,32				
Model Selection Page 223				
Specifications Page 247				
Construction Page 248				
Dimensions Page 249				

Rod Type Series LEY Size 63

ORod Type LEY-X5 DisstightiWalerjetproot (P1P65 Equivienti)

Electric Actuator/Guide Rod Type Series LEYG

Specific Product Precautions

Page 294

OStep Motor (Servo/24 VDC)/	
Servo Motor (24 VDC) Controller	
Step Data Input Type/Series LECP6/LECA6	Page 551
Controller Setting Kit/LEC-W2	Page 560
Teaching Box/LEC-T1	Page 561
CC-Link Direct Input Type/Series LECPMJ	Page 591
Controller Setting Kit/LEC-W2	Page 595
Teaching Box/LEC-T1	Page 596
Gateway Unit/Series LEC-G	Page 563
Programless Controller/Series LECP1	Page 567
Step Motor Driver/Series LECPA	Page 581
Controller Setting Kit/LEC-W2	Page 588
Teaching Box/LEC-T1	Page 589

Electric Actuators

Rod Type

Electric Actuator/Rod Type

Series LEY
Model Selection
Series LEY > Page 229

Selection Procedure

Positioning Control Selection Procedure

Step 1

Check the work load-speed. (Vertical transfer)

Step 2 Check the cycle time.

Selection Example

Operating

| - Workpiece mass: $4[\mathrm{~kg}] \quad$ - Speed: $100[\mathrm{~mm} / \mathrm{s}]$ |
| :--- | :--- | :--- |
| - Acceleration/Deceleration: $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ |

Check the work load-speed. <Speed-Vertical work load graph>
Select the target model based on the workpiece mass and speed with reference to the <Speed-Vertical work load graph>.
Selection example) The LEY16B is temporarily selected based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to page 231 for the horizontal work load in the

<Speed-Vertical work load graph> (LEY16/Step motor)

Step 2

Check the cycle time.

Calculate the cycle time using the following calculation method.

- Cycle time T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$
-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$
-T2: Constant speed time can be found from the following equation
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{s}]$
-T4: Settling time varies depending on the conditions such as motor types, load and in position of the step data. Therefore, calculate the settling time with reference to the following value.

$$
\mathrm{T} 4=0.2[\mathrm{~s}]
$$

Calculation example)
T1 to T4 can be calculated as follows.

L : Stroke [mm] ... (Operating condition)
V : Speed [mm/s] ... (Operating condition)
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \ldots$ (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$ (Operating condition)
T1: Acceleration time [s] ... Time until reaching the set speed T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop T4: Settling time [s] ... Time until positioning is completed
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=100 / 3000=0.033[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=100 / 3000=0.033[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{200-0.5 \cdot 100 \cdot(0.033+0.033)}{100}=1.97[\mathrm{~s}]$
$\mathrm{T} 4=0.2[\mathrm{~s}]$
Therefore, the cycle time can be obtained as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.033+1.967+0.033+0.2=\mathbf{2 . 2 3 3}[\mathbf{s}]$

Selection Procedure

Pushing Control Selection Procedure

* The duty ratio is a ratio at the time that can keep being pushed.

Selection Example

Operating conditions

\bullet Mounting condition: Horizontal (pushing)	\bullet Duty ratio: $20[\%]$
\bullet-Jig weight: $0.2[\mathrm{~kg}]$	\bullet Speed: $100[\mathrm{~mm} / \mathrm{s}]$
\bullet Pushing force: $60[\mathrm{~N}]$	\bullet Stroke: $200[\mathrm{~mm}]$

Selection example)
Based on the table below,
-Duty ratio: 20 [\%]
Therefore, the set value of pushing force will be 70 [\%].
<Conversion table of pushing force-duty ratio>
(LEY16/Step motor)

Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
40 or less	100	-
50	70	12
70	20	1.3
85	15	0.8

Check the duty ratio.
<Conversion table of pushing force-duty ratio>
Select the [Pushing force] from the duty ratio with reference to the <Conversion table of pushing force-duty ratio>.

* [Set value of pushing force] is one of the step data input to the controller.
* [Continuous pushing time] is the time that the actuator can continuously keep pushing.

Step 2 Check the pushing force. <Force conversion graph>
Select the target model based on the set value of pushing force and force with reference to the <Force conversion graph>.
Selection example)
Based on the graph shown on the right side,

- Set value of pushing force: 70 [\%]
-Pushing force: 60 [N]
Therefore, the LEY16B is temporarily selected.
Step 3 Check the lateral load on the rod end.
<Graph of allowable lateral load on the rod end>
Confirm the allowable lateral load on the rod end of the actuator: LEY16 \square, which has been selected temporarily with reference to the <Graph of allowable lateral load on the rod end>.
Selection example)
Based on the graph shown on the right side,
\bullet - Jig weight: $0.2[\mathrm{~kg}] \sim 2[\mathrm{~N}]$
-Product stroke: 200 [mm]
Therefore, the lateral load on the rod end is in the allowable range.

Based on the above calculation result, the LEY16B-200 is selected.

<Graph of allowable lateral load on the rod end>
 Note) Set values for the controller.

Speed-Work Load Graph (Guide)

For Step Motor (Servo/24 VDC) LECP6, LECP1, LECPMJ

Horizontal

LEY25 \square

LEY32 $\square \square$ for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY40 \square

Vertical

LEY16 \square

LEY25 \square

LEY32 \square

LEY40 \square

Model Selection Series LEY
 Step Motor (Servo/24 VDC)
 Servo Motor (24 VDC)

Speed-Work Load Graph (Guide)
Refer to page 215 for the LECP6, LECP1,
LECPMJ, and page 217 for the LECA6.
For Step Motor (Servo/24 VDC) LECPA

Horizontal

LEY25 \square

LEY32 \square
Z 7 for acceleration/deceleration: $2000 \mathrm{~mm} / \mathrm{s}^{2}$

LEY40 \square

Vertical
LEY16 \square

LEY25 \square

LEY32 \square

LEY40 \square

\qquad

\square
$\underset{\sim}{u}$

 $\stackrel{0}{4}$

Series LEY

Step Motor (Servo/24 VDC)

Speed-Work Load Graph (Guide)
 For Servo Motor (24 VDC) LECA6

Refer to page 215 for the LECP6, LECP1, LECPMJ, and page 216 for the LECPA.

Horizontal

LEY16A \square

LEY25A \square

Vertical

LEY16A \square

LEY25A \square

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] $=$ [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Force Conversion Graph (Guide)

Step Motor (Servo/24 VDC)

LEY16

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]

$\mathbf{2 5} 5^{\circ} \mathbf{C}$ or less	85 or less	100	-
$\mathbf{4 0} \mathbf{C}$	40 or less	100	-
	50	70	12
	70	20	1.3
	85	15	0.8

LEY25

| Ambient temperature | Set value of pushing force [\%] | Duty ratio [\%] | Continuous pushing time [minute]] |
| :--- | :--- | :--- | :--- | $40^{\circ} \mathrm{C}$ or less 65 or less

LEY32

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]

$\mathbf{2 5}{ }^{\circ} \mathbf{C}$ or less	85 or less	100	-
$\mathbf{4 0} \mathbf{C}$	65 or less	100	-
	85	50	15

LEY40

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
$40^{\circ} \mathrm{C}$ or less	65 or less	100	-

Servo Motor (24 VDC)

LEY16

Ambient temperature	Set value of pushing force [\%]	Duty ratio [\%]	Continuous pushing time [minute]
$40^{\circ} \mathrm{C}$ or less	95 or less	100	-

LEY25

Ambient temperature	Set value of pushing force $[\%]$	Duty ratio $[\%]$	Continuous pushing time [minute]
$\mathbf{4 0} 0^{\circ} \mathbf{C}$ or less	95 or less	100	-

<Pushing Force and Trigger Level Range> Without Load

Model	Pushing speed [mm/s]	Pushing force (Setting input value)
LEY16 \square	1 to 4	30% to 85%
	5 to 20	35\% to 85\%
	21 to 50	60\% to 85\%
LEY25 \square	1 to 4	20\% to 65\%
	5 to 20	35\% to 65\%
	21 to 35	50\% to 65\%
LEY32 \square	1 to 4	20\% to 85\%
	5 to 20	35% to 85%
	21 to 30	60\% to 85\%
LEY40 \square	1 to 4	20\% to 65\%
	5 to 20	35\% to 65\%
	21 to 30	50\% to 65\%

Model	Pushing speed [mm/s]	Pushing force (Setting input value)
	1 to 4	40% to 95%
	5020	60%

<Set Values for Vertical Upward Transfer Pushing Operation>
For vertical loads (upward), set the pushing force to the maximum value shown below, and operate at the work load or less.

Model	LEY16			LEY25 \square			LEY32 \square			LEY40			LEY16■A			LEY25■A		
Lead	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C	A	B	C
Work load [kg]	1	1.5	3	2.5	5	10	4.5	9	18	7	14	28	1	1.5	3	1.2	2.5	5
Pushing force		85\%			65\%			8\%			65\%			95\%			95\%	

Non-rotating Accuracy of Rod

Avoid using the electric actuator in such a way that rotational torque would be applied to the piston rod
This may cause deformation of the non-rotating guide, abnormal responses of the auto switch, play in the internal guide or an increase in the sliding resistance.

Vertical
 LEY25 \square

LEY32 \square

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] $=$ [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Vertical

LEY25 \square

LEY32 \square

Series LEY-X5

Force Conversion Graph

Step Motor (Servo/24 VDC)

LEY25

Ambient temperature	Set value of pushing force* [\%]	Duty ratio [\%]	Continuous pushing time [minute]
$\mathbf{4 0} \mathbf{C}$ or less	65 or less	100	-

LEY32

Ambient temperature	Set value of pushing force* [\%]	Duty ratio [\%]	Continuous pushing time [minute]
$\mathbf{2 5}{ }^{\circ} \mathbf{C}$ or less	85 or less	100	-
$\mathbf{4 0 ^ { \circ }} \mathbf{C}$	65 or less	100	-
	85	50	15

Servo Motor (24 VDC)

LEY25

Ambient temperature	Set value of pushing force* [\%]	Duty ratio [\%]	Continuous pushing time [minute]
$\mathbf{4 0} \mathbf{C}$ or less	95 or less	100	-

<Pushing Force and Trigger Level Range> Without Load

Model	Pushing speed [mm/s]	Pushing force (Setting input value)	Model	Pushing speed [mm/s]	Pushing force (Setting input value)
LEY25 \square	1 to 4	20\% to 65\%	LEY25 \square A	1 to 4	40\% to 95\%
	5 to 20	35\% to 65\%		5 to 20	60\% to 95\%
	21 to 35	50\% to 65\%		21 to 35	80\% to 95\%
LEY32 \square	1 to 4	20\% to 85%			
	5 to 20	35\% to 85\%			
	21 to 30	60\% to 85\%			

<Set Values for Vertical Upward Transfer Pushing Operation>
For vertical loads (upward), set the pushing force to the maximum value shown below, and operate at the work load or less.

Model	LEY25 \square			LEY32 \square			LEY25 \square A					
Lead	A	B	C	A	B	C	A	B	C			
Work load $[\mathrm{kg}]$	2.5	5	10	4.5	9	18	1.2	2.5	5			
Pushing force	65%				85%				95%			

Electric Actuator/Rod Type

Series LEY/LEY-X5 Dust-tightWater-jet-proof (IP65 Equivalent)
Model Selection ${ }^{25,32,63}$

Selection Procedure

Positioning Control Selection Procedure

Step 1

Check the work load-speed. (Vertical transfer)

Step 2 Check the cycle time.

Selection Example

Operating

Check the work load-speed. <Speed-Vertical work load graph>
Select the target model based on the workpiece mass and speed with reference to the <Speed-Vertical work load graph>.
Selection example) The LEY25B is temporarily selected based on the graph shown on the right side.

* It is necessary to mount a guide outside the actuator when used for horizontal transfer. When selecting the target model, refer to pages 247, 256, 486 and 492 for the horizontal

<Speed-Vertical work load graph>
(LEY25) work load in the specifications, and page 294 for the precautions.
The regeneration option may be necessary. Refer to pages 225 and 226 for "Required Conditions for Regeneration Option".

Check the cycle time.

Calculate the cycle time using the following calculation method. - Cycle time T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the motor type and load. The value below is recommended.

$$
\mathrm{T} 4=0.05[\mathrm{~s}]
$$

Calculation example)
T1 to T4 can be calculated as follows.

L : Stroke [mm] \cdots (Operating condition)
V : Speed [mm/s] ... (Operating condition)
a1: Acceleration [mm/s²] \cdots (Operating condition)
a2: Deceleration [mm/s²] \cdots (Operating condition)
T1: Acceleration time [s] ... Time until reaching the set speed
T2: Constant speed time [s] ... Time while the actuator is operating at a constant speed
T3: Deceleration time [s] ... Time from the beginning of the constant speed operation to stop
T4: Settling time [s] ... Time until positioning is completed
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 5000=0.06[\mathrm{~s}], \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 5000=0.06[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}=\frac{300-0.5 \cdot 300 \cdot(0.06+0.06)}{300}=0.94[\mathrm{~s}]$
T4 $=0.05$ [s]
Therefore, the cycle time can be obtained as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4=0.06+0.94+0.06+0.05=1.11[\mathrm{~s}]$

Selection Procedure

Pushing Control Selection Procedure

Selection Example

Operating conditions

－Mounting condition：Horizontal（pushing）	•Duty ratio： $60[\%]$
－Jig weight： $0.5[\mathrm{~kg}]$	－Speed： $100[\mathrm{~mm} / \mathrm{s}]$

＊The duty ratio is a ratio at the time that can keep being pushed．
＜Conversion table of pushing force－duty ratio＞
Select the［Pushing force］from the duty ratio with reference to the
＜Conversion table of pushing force－duty ratio＞．
Selection example）
Based on the table below，
－Duty ratio： 60 ［\％］
Therefore，the set value of pushing force will be 30 ［\％］．
＜Conversion table of pushing force－duty ratio＞
（LEY25／AC Servo motor）

Set value of pushing force［\％］	Duty ratio ［\％］	Continuous pushing time［minute］
25 or less	100	-
30	60	1.5

＊［Set value of pushing force］is one of the data input to the driver．
＊［Continuous pushing time］is the time that the actuator can continuously keep pushing．

Step 2

Check the pushing force．＜Force conversion graph＞

Select the target model based on the torque limit／command value and pushing force with reference to the＜Force conversion graph＞．
Selection example）
Based on the graph shown on the right side，
－Torque limit／Command value： 30 ［\％］
－Pushing force： 255 ［N］
Therefore，the LEY25B is temporarily selected．

＜Force conversion graph＞
（LEY25）

＜Graph of allowable lateral load on the rod end＞

Based on the above calculation result，the LEY25B－300 is selected．

Check the lateral load on the rod end．
＜Graph of allowable lateral load on the rod end＞
Confirm the allowable lateral load on the rod end of the actuator： LEY25B，which has been selected temporarily with reference to the ＜Graph of allowable lateral load on the rod end＞．
Selection example）
Based on the graph shown on the right side，
\bullet－Jig weight： $0.5[\mathrm{~kg}] \sim 5[\mathrm{~N}]$
－Product stroke： 300 ［mm］
Therefore，the lateral load on the rod end is in the allowable range．

岗

苋
亳
\underline{Z}

Speed-Vertical Work Load Graph/Required Conditions for "Regeneration Option"

LEY25 \square (Motor mounting position: Top/Parallel, In-line)

LEY32 \square (Motor mounting position: Top/Parallel)

LEY63 \square (Motor mounting position: Top/Parallel, In-line)

Required conditions for "Regeneration option"

* Regeneration option is required when using product above regeneration line in graph. (Order separately.)
"Regeneration Option" Models

Size	Model
LEY25 \square	LEC-MR-RB-032
LEY32 \square	LEC-MR-RB-032
LEY63 \square	LEC-MR-RB-12

LEY32D (Motor mounting position: In-line)

Speed－Horizontal Work Load Graph／Required Conditions for＂Regeneration Option＂

LEY32 \square（Motor mounting position：Top／Parallel）

LEY63 \square（Motor mounting position：Top／Parallel，In－line）

Required conditions for＂Regeneration option＂
＊Regeneration option is required when using product above regeneration line in graph．（Order separately．）
＂Regeneration Option＂Models

Size	Model
LEY25 \square	LEC－MR－RB－032
LEY32 \square	LEC－MR－RB－032
LEY63 \square	-

LEY32D（Motor mounting position：In－line）

Allowable Stroke Speed

Model	AC servo motor	Lead		Stroke［mm］													
		Symbol	［mm］	30	50	100	150	200	250	300	350	400	450	500	600	700	800
	$\begin{aligned} & 100 \mathrm{~W} \\ & \square \square 40 \end{aligned}$	A	12	900							600		－	－	－		
LEY25		B	6	450							300		－	－	－		
Motor mounting position： Top／Parallel，In－line		C	3	225							150		－	－	－		
		（Motor rotation speed）		（4500 rpm）							（3000 rpm）		－		－		
	$\begin{gathered} 200 \mathrm{~W} \\ \square \square 60 \end{gathered}$	A	20	1200									800		－		
		B	10	600									400		－		
Motor mounting position： Top／Parallel		C	5	300									200		－		
		（Motor rota	ion speed）	（3600 rpm）									（2400 rpm）		－		
	$\begin{gathered} 200 \mathrm{~W} \\ \square \square 60 \end{gathered}$	A	16	1000									640		－		
LEY32D		B	8	500									320		－		
Motor mounting position：		C	4	250									160		－		
		（Motor rotation speed）		（3750 rpm）									（2400 rpm）		－		
LEY63 \square $\binom{$ Motor mounting position：}{ Top／Parallel，n－line }	$\begin{gathered} 400 \mathrm{~W} \\ \square \square 60 \end{gathered}$	A	20	1000											800	600	500
		B	10	500											400	300	250
		C	5	250											200	150	125
		（Motor rotation speed）		（3000 rpm）											（2400 rpm）（1800 rpm）		（1500 rpm）
		L＊	2.86	70													
		（Motor rotation speed）		（1470 rpm）													

Series LEY/LEY-X5
 AC Servo Motor size 25, 32, 63 Dust-tight/Water-jet-proof (IP65 Equivalent)

Force Conversion Graph (Guide)

LEY25 \square (Motor mounting position: Top/Parallel, In-line)

LEY32 \square (Motor mounting position: Top/Parallel)

LEY32D \square (Motor mounting position: In-line)

LEY63 \square (Motor mounting position: Top/Parallel, In-line)

Graph of Allowable Lateral Load on the Rod End (Guide)

[Stroke] = [Product stroke] + [Distance from the rod end to the center of gravity of the workpiece]

Electric Actuator/
 Rod Type

How to Order

(2) Motor mounting position

Nil	Top mounting
\mathbf{R}	Right side parallel
L	Left side parallel
D	In-line

Symbol	Type	Size			Compatible
	LEY16	LEY25	LEY3240	controlerldriver	

5 Stroke $[\mathrm{mm}]$	
30	30
to	to
500	500

* Refer to the applicable stroke table.

7 Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

6 Motor option*	
Nil	Without option
C	With motor cover
B	With lock
W	With lock/motor cover

When "With lock" or "With lock/motor cover" are selected for the top mounting and right/left side parallel types, the motor body will stick out of the end of the body for size $16 / 40$ with strokes 30 mm or less. Check for interference with workpieces before selecting a model.

* Applicable stroke table O: Standard												
Model	30	50	100	150	200	250	300	350	400	450	500	Manufacturable stroke range [mm]
LEY16	-	-	\bigcirc	-	-	\bigcirc	-	-	-	-	-	10 to 300
LEY25	\bigcirc	-	-	15 to 400								
LEY32/40	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	20 to 500

* Please consult with SMC for non-standard strokes as they are produced as special orders.

[^0]
8 Mounting＊1

Symbol	Type	Motor mounting position	
		Top／Parallel	In－line
Nil	Ends tapped／ Body bottom tapped ${ }^{* 2}$	\bigcirc	\bigcirc
L	Foot	\bigcirc	－
F	Rod flange＊2	＊＊	\bigcirc
G	Head flange＊2	＊5	－
D	Double clevis＊3	\bigcirc	－

＊1 Mounting bracket is shipped together，（but not assembled）．
＊2 For horizontal cantilever mounting with the rod flange，head flange and ends tapped，use the actuator within the following stroke range．
－LEY25： 200 mm or less
－LEY32／40： 100 mm or less
＊3 For mounting with the double clevis，use the actuator within the following stroke range．
－LEY16： 100 mm or less
－LEY25： 200 mm or less
－LEY32／40： 200 mm or less
＊4 Rod flange is not available for the LEY16／40 with stroke 30 mm and motor option＂With lock＂，＂With lock／motor cover＂．
＊5 Head flange is not available for the LEY32／40．

（13）Controller／Driver mounting Nil Screw mounting DIN rail mounting＊1

＊1 DIN rail is not included．Order it separately．

Compatible Controller／Driver

Type	Step data input type	Step data input type	CC－Link direct input type	Programless type	Pulse input type
Series	LECP6	LECA6	LECPMJ	LECP1	LECPA
Features	Value（Ste Standard	data）input controller	CC－Link direct input	Capable of setting up operation（step data）without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor （Servo／24 VDC）	Servo motor （24 VDC）	Step motor （Servo／24 VDC）		
Maximum number of step data	64 points			14 points	－
Power supply voltage	24 VDC				
Reference page	Page 551	Page 551	Page 591	Page 567	Page 581

10 Actuator cable length［m］

Nil	Without cable
$\mathbf{1}$	1.5
3	3
$\mathbf{5}$	5
$\mathbf{8}$	8^{*}
A	10^{*}
B	15^{*}
C	20^{*}

＊Produced upon receipt of order（Robotic cable only） Refer to the specifications Note 5）on page 231.
12 I／O cable length ${ }^{* 1}$ ，Communication plug

Nil	Without cable （Without communication plug connector）＊3
$\mathbf{1}$	1.5 m
$\mathbf{3}$	$3 \mathrm{~m}^{* 2}$
$\mathbf{5}$	$5 \mathrm{~m}^{* 2}$
\mathbf{S}	Straight type communication plug connector＊3
\mathbf{T}	T－branch type communication plug connector＊3

＊1 When＂Without controller／driver＂is selected for controller／driver types，I／O cable cannot be selected．Refer to page 559 （For LECP6／ LECA6），page 573 （For LECP1）or page 587 （For LECPA）if I／O cable is required．
＊2 When＂Pulse input type＂is selected for controller／driver types，pulse input usable only with differential．Only 1.5 m cables usable with open collector．
＊3 For the LECPMJ，only＂Nil＂，＂S＂and＂T＂are selectable since I／O cable is not included．

1 For details about controller／driver and compatible motor，refer to the compatible controller／driver below．
＊2 Only available for the motor type＂Step motor．＂
＊3 Not applicable to CE．
＊4 When pulse signals are open collector， order the current limiting resistor（LEC－PA－ R－\square ）on page 587 separately．

صٌ

Specifications

Step Motor (Servo/24 VDC)

Model				LEY16			LEY25			LEY32			LEY40		
Stroke [mm] ${ }^{\text {Note 1) }}$				$\begin{gathered} 30,50,100,150 \\ 200,250,300 \\ \hline \end{gathered}$			$\begin{gathered} \hline 30,50,100,150,200 \\ 250,300,350,400 \\ \hline \end{gathered}$			$\begin{gathered} \hline 30,50,100,150,200,250 \\ 300,350,400,450,500 \\ \hline \end{gathered}$			$\begin{gathered} \hline 30,50,100,150,200,250 \\ 300,350,400,450,500 \\ \hline \end{gathered}$		
	Work load [kg] Note 2)	Horizontal	(3000 [mm/s²])	6	17	30	20	40	60	30	45	60	50	60	80
		$\begin{aligned} & \text { LECP1, } \\ & \text { LECPMJ. } \end{aligned}$	(2000[mm/s²])	10	23	35	30	55	70	40	60	80	60	70	90
		$\begin{aligned} & \text { Horizontal } \\ & \text { (LECPA) } \end{aligned}$	(3000 [mm/s²])	4	11	20	12	30	30	20	40	40	30	60	60
$\stackrel{\square}{0}$			(2000 [mm/s²])	6	17	30	18	50	50	30	60	60	-	-	-
		Vertical	($3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$)	2	4	8	8	16	30	11	22	43	13	27	53
\%	Pushing force [N] ${ }^{\text {Note 3) 4) 5) }}$			14 to 38	27 to 74	51 to 141	63 to 122	126 to 238	232 to 452	80 to 189	156 to 370	296 to 707	132 to 283	266 to 553	562 to 1058
¢	Speed	LECP6/L	ECP1/LECPMJ	15 to 500	8 to 250	4 to 125	18 to 500	9 to 250	5 to 125	24 to 500	12 to 300	6 to 150	24 to 500	12 to 350	6 to 175
$\stackrel{0}{\mathbf{n}}$	$\left[\mathrm{mm} / \mathrm{s}^{\text {Note } 5)}\right.$		EPA								12 to 250	6 to 125	24 to 300	12 to 150	6 to 75
哭	Max. acceleration/deceleration [mm/s²]			3000											
	Pushing speed [mm/s] ${ }^{\text {Note } 6)}$			50 or less			35 or less			30 or less			30 or less		
	Positioning repeatability [mm]			± 0.02											
	Lost motion [mm] ${ }^{\text {Note } 7 \text { 7 }}$			0.1 or less											
	Screw lead [mm]			10	5	2.5	12	6	3	16	8	4	16	8	4
	ImpactVibration resistance [m/s ${ }^{2}$] ${ }^{\text {Note }}$ 8)			50/20											
	Actuation type			Ball screw + Belt (LEY \square)/Ball screw (LEY $\square \mathrm{D}$)											
	Guide type			Sliding bushing (Piston rod)											
	Operating humidity range [\%RH]			5 to 40											
				90 or less (No condensation)											
Ш	Motor size			$\square 28$			$\square 42$			$\square 56.4$			$\square 56.4$		
	Motor type			Step motor (Servo/24 VDC)											
	Encoder			Incremental A/B phase (800 pulse/rotation)											
	Rated voltage [V]			24 VDC $\pm 10 \%$											
	Power consumption [W] ${ }^{\text {Note } 9)}$			23			40			50			50		
				16			15			48			48		
	Max. instantineous power consumption [W] Wde it]			43			48			104			106		
$\stackrel{5}{6}$	Type ${ }^{\text {Note 12) }}$			Non-magnetizing lock											
	Holding force [N]			20	39	78	78	157	294	108	216	421	127	265	519
	Power consumption [W] Note 13)			2.9			5			5			5		
	Rated voltage [V]			24 VDC $\pm 10 \%$											

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) Horizontal: The maximum value of the work load. An external guide is necessary to support the load (Friction coefficient of guide: 0.1 or less). The actual work load and transfer speed change according to the condition of the external guide. Also, speed changes according to the work load. Check "Model Selection" on pages 215 and 216.
Vertical: Speed changes according to the work load. Check "Model Selection" on pages 215 and 216.
The values shown in () are the acceleration/deceleration.
Set these values to be $3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$ or less.
Note 3) Pushing force accuracy is $\pm 20 \%$ (F.S.).
Note 4) The pushing force values for LEY16 \square is 35% to 85%, for LEY25 \square is 35% to 65%, for LEY32 \square is 35% to 85% and for LEY $40 \square$ is 35% to 65%. The pushing force values change according to the duty ratio and pushing speed. Check "Model Selection" on page 218.
Note 5) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m . (At 15 m : Reduced by up to 20%)
Note 6) The allowable speed for pushing operation. When push conveying a workpiece, operate at the vertical work load or less.
Note 7) A reference value for correcting an error in reciprocal operation.
Note 8) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 9) The power consumption (including the controller) is for when the actuator is operating.
Note 10) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during the operation. Except during the pushing operation.
Note 11) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 12) With lock only
Note 13) For an actuator with lock, add the power consumption for the lock.

Specifications

Servo Motor（24 VDC）

Model		LEY16A			LEY25A		
	Stroke［mm］Note 1）	$\begin{gathered} 30,50,100,150 \\ 200,250,300 \end{gathered}$			$\begin{gathered} 30,50,100,150,200 \\ 250,300,350,400 \\ \hline \end{gathered}$		
	Work load Hoizutala $\left(3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]\right)$	3	6	12	7	15	30
	［kg］${ }^{\text {Note } 2)}$ Vericical（ $\left.3000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]\right)$	2	4	8	3	6	12
	Pushing force［ N ］ Note 3）4）	16 to 30	30 to 58	57 to 111	18 to 35	37 to 72	66 to 130
	Speed［mm／s］	1 to 500	1 to 250	1 to 125	2 to 500	1 to 250	1 to 125
	Max．acceleration／deceleration［mm／s²］	3000					
	Pushing speed［mm／s］Note 5）	50 or less			35 or less		
	Positioning repeatability［mm］	± 0.02					
	Lost motion［mm］${ }^{\text {Note 6）}}$	0.1 or less					
	Screw lead［mm］	10	5	2.5	12	6	3
	ImpactVibration resistance［m／s ${ }^{2}$ ］ Noie 7 ］	50／20					
	Actuation type	Ball screw＋Belt（LEY \square ）／Ball screw（LEY $\square \mathrm{D}$ ）					
	Guide type	Sliding bushing（Piston rod）					
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］	5 to 40					
	Operating humidity range［\％RH］	90 or less（No condensation）					
$\stackrel{\circ}{\circ}$	Motor size	$\square 28$			$\square 42$		
은	Motor output［W］	30			36		
\％	Motor type	Servo motor（24 VDC）					
\％	Encoder	Incremental A／B phase（800 pulse／rotation）／Z phase					
¢	Rated voltage［V］	24 VDC $\pm 10 \%$					
－	Power consumption［W］Note 8）	40			86		
－	Standly powerc consumpion when opeating［W］Wees）	4 （Horizontal）／6（Vertical）			4 （Horizontal）／12（Vertical）		
Ш－	Max．instantianeous pover consumption［WW Wed ${ }^{\text {a }}$ ）	59			96		
－ 5	Type ${ }^{\text {Note 11）}}$	Non－magnetizing lock					
它芴	Holding force［N］	20	39	78	78	157	294
皆：	Power consumption［W］Note 12）	2.9			5		
	Rated voltage［V］	24 VDC $\pm 10 \%$					

Note 1）Please consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）Horizontal：The maximum value of the work load．An external guide is necessary to support the load（Friction coefficient of guide： 0.1 or less）．The actual work load and transfer speed change according to the condition of the external guide． Vertical：Check＂Model Selection＂on page 217 for details． The values shown in（ ）are the acceleration／deceleration． Set these values to be 3000 ［ $\mathrm{mm} / \mathrm{s}^{2}$ ］or less．
Note 3）Pushing force accuracy is $\pm 20 \%$（F．S．）．
Note 4）The pushing force values for LEY16A \square is 50% to 95% and for EY25A \square is 50% to 95% ．The pushing force values change according to the duty ratio and pushing speed．Check＂Model Selection＂on page 218.
Note 5）The allowable speed for pushing operation．When push conveying a workpiece，operate at the vertical work load or ess．
Note 6）A reference value for correcting an error in reciprocal operation． Note 7）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 8）The power consumption（including the controller）is for when the actuator is operating．
Note 9）The standby power consumption when operating（including the controller）is for when the actuator is stopped in the set position during the operation．Except during the pushing operation．
Note 10）The maximum instantaneous power consumption（including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply．
Note 11）With lock only
Note 12）For an actuator with lock，add the power consumption for the lock．

Weight

Weight：Motor Top／Parallel Type

Series		LEY16							LEY25									LEY32										
Stroke［mm］		30	50	100	150	200	250	300	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product weight［kg］	Step motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.18	1.25	1.42	1.68	1.86	2.03	2.21	2.38	2.56	2.09	2.20	2.49	2.77	3.17	3.46	3.74	4.03	4.32	4.60	4.89
	Servo motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.14	1.21	1.38	1.64	1.82	1.99	2.17	2.34	2.52	－	－	－	－	－	－	－	－	－	－	－
Series		LEY40																										
Stroke［mm］		30	50	100	150	200	250	300	350	400	450	500																
Product weight［kg］	Step motor	2.39	2.50	2.79	3.07	3.47	3.76	4.04	4.33	4.62	4.90	5.19																
	Servo motor	－	－	－	－	－	－	－	－	－	－	－																

Weight：In－line Motor Type

Series		LEY16D							LEY25D									LEY32D										
Stroke［mm］		30	50	100	150	200	250	300	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
Product	Step motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.17	1.24	1.41	1.67	1.85	2.02	2.20	2.37	2.55	2.08	2.19	2.48	2.76	3.16	3.45	3.73	4.02	4.31	4.59	4.88
weight［ kg ］	Servo motor	0.58	0.62	0.73	0.87	0.98	1.09	1.20	1.13	1.20	1.37	1.63	1.81	1.98	2.16	2.33	2.51	－	－	－	－	－	－	－	－	－	－	－
Series		LEY40D																										
Stroke［mm］		30	50	100	150	200	250	300	350	400	450	500																
Product weight［kg］	Step motor	2.38	2.49	2.78	3.06	3.46	3.75	4.03	4.32	4.61	4.89	5.18																
	Servo motor	－	－	－	－	－	－	－	－	－	－	－																

Additional Weight

Size		16	$\mathbf{2 5}$	$\mathbf{3 2}$	$\mathbf{4 0}$
Lock	0.12	0.26	0.53	0.53	
Motor cover	0.02	0.03	0.04	0.05	
Lock／Motor cover	0.16	0.32	0.61	0.62	
Rod end male thread	Male thread	0.01	0.03	0.03	0.03
	Nut	0.01	0.02	0.02	0.02
Foot（2 sets including mounting bolt）	0.06	0.08	0.14	0.14	
Rod flange（including mounting bolt）		0.13	0.17	0.20	0.20
Head flange（including mounting bolt）					
Double clevis（including pin，retaining ring and mounting bolt）	0.08	0.16	0.22	0.22	

Step Motor (Servo/24 VDC)

Construction

16
 Motor top mounting type: LEY ${ }_{32}^{25}$ 40

Motor top/parallel type With lock/motor cover

Construction
In－line motor type： $\operatorname{LEY}_{32} \stackrel{16}{25} \mathrm{D}$

In－line motor type：With lock／motor cover

Component Parts

No．	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw（shaft）	Alloy steel	
$\mathbf{3}$	Ball screw nut	Resin／Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminum alloy	
7	Housing	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Lead bronze cast	
12	Bumper	Urethane	
13	Bearing	-	
14	Return box	Aluminum die－cast	Coating
15	Return plate	Aluminum die－cast	Coating
16	Magnet	-	
17	Wear ring holder	Stainless steel	Stroke 101 mm or more
18	Wear ring	POM	Stroke 101 mm or more
19	Screw shaft pulley	Aluminum alloy	
20	Motor pulley	Aluminum alloy	
21	Belt	-	
22	Bearing stopper	Aluminum alloy	
23	Parallel pin	Stainless steel	
24	Seal	NBR	
25	Retaining ring	Steel for spring	Phosphate coated

No．	Description	Material	Note
$\mathbf{2 6}$	Motor	-	
$\mathbf{2 7}$	Motor cover	Synthetic resin	Only＂With motor cover＂
$\mathbf{2 8}$	Grommet	Synthetic resin	Only＂With motor cover＂
$\mathbf{2 9}$	Motor block	Aluminum alloy	Anodized
$\mathbf{3 0}$	Motor adapter	Aluminum alloy	Anodized／LEY16，25 only
$\mathbf{3 1}$	Hub	Aluminum alloy	
$\mathbf{3 2}$	Spider	NBR	
$\mathbf{3 3}$	Socket（Male thread）	Free cutting carbon steel	Nickel plating
$\mathbf{3 4}$	Nut	Alloy steel	
$\mathbf{3 5}$	Motor cover with lock	Aluminum alloy	Only＂With lock／motor cover＂
$\mathbf{3 6}$	Cover support	Aluminum alloy	Only＂With lock／motor cover＂

Replacement Parts（Top／Parallel only）／Belt

No．	Size	Order no．
21	16	LE－D－2－1
	25	LE－D－2－2
	32,40	LE－D－2－3

Replacement Parts／Grease Pack

Applied portion	Order no．
Piston rod	GR－S－010 $(10 \mathrm{~g})$
	GR－S－020 $(20 \mathrm{~g})$

＊Apply grease on the piston rod periodically．
Grease should be applied at 1 million cycles or 200 km ，whichever comes first．

Series LEY

Step Motor (Servo/24 VDC)
Servo Motor (24 VDC)

Dimensions: Motor Top/Parallel

Note 1) Range within which the rod can move when it returns to origin. Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

	Stroke																		Step	motor	Servo	motor	Y
Size	range [mm]	A	B	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U	V	W	X	W	X	
16	10 to 100	101	90.5	10	16	34	34.3	M5 x 0.8	18	14	10.5	25.5	M 4×0.7	7	35	67.5	0.5	28	61.8	80.3	62.5	81	22.5
	101 to 300	121	110.5																				
25	15 to 100	130.5	116	13	20	44	45.5	M8x 1.25	24	17	14.5	34	M5 x 0.8	8	46	92	1	42	63.4	85.4	59.6	81.6	26.5
	101 to 400	155.5	141																				
32	20 to 100	148.5	130	13	25	51	56.5	M8x 1.25	31	22	18.5	40	M6 x 1.0	10	60	118	1	56.4	68.4	95.4	-	-	34
	101 to 500	178.5	160																				
40	20 to 100	148.5	130	13	25	51	56.5	M8x 1.25	31	22	18.5	40	M6 x 1.0	10	60	118	1	56.4	90.4	117.4	-	-	34
	101 to 500	178.5	160																				

Body Bottom Tapped

[mm]											
Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
16	10 to 39	15	35.5	17	23.5	23	40	M4 x 0.7	5.5	3	4
	40 to 100			32	31		40				
	101 to 300			62	46		60				
25	15 to 39	20	46	24	32	29		M5 x 0.8	6.5	4	5
	40 to 100						50				
	101 to 124			42	41		75				
	125 to 200			59	49.5						
	201 to 400			76	58						
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	20 to 39	25	55	22	36	30		M6 x 1	8.5	5	6
	40 to 100						50				
	101 to 124			36	43		80				
	125 to 200			53	51.5						
	201 to 500			70	60						

Dimensions：Motor Top／Parallel

Motor left side parallel type： $\operatorname{LEY}_{32}^{25} \mathrm{~L}$

Motor right side parallel type： $\operatorname{LEY}_{32}^{16}{ }_{40}^{25} R$

	$[\mathrm{mm}]$		
Size	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$	\mathbf{U}
$\mathbf{1 6}$	35.5	67	0.5
$\mathbf{2 5}$	47	91	1
$\mathbf{3 2 , 4 0}$	61	117	1

Note）When the motor is mounted on the left or right side in parallel，the groove for auto switch on the side to which the motor is mounted is hidden．

Series LEY

Step Motor (Servo/24 VDC)
Servo Motor (24 VDC)

Dimensions: In-line Motor

Note 1) Range within which the rod can move when it returns to origin. Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
16	10 to 39	15	17	23.5	23	40	M4 x 0.7	5.5	3	4
	40 to 100		32	31		40				
	101 to 300		62	46		60				
25	15 to 39	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41		50				
	101 to 124		42	41		75				
	125 to 200		59	49.5						
	201 to 400		76	58						
$\begin{aligned} & 32 \\ & 40 \end{aligned}$	20 to 39	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100		36	43						
	101 to 124		36	43		80				
	125 to 200		53	51.5						
	201 to 500		70	60						

Dimensions

Connector

Size	\mathbf{T}_{2}	\mathbf{X}_{2}
$\mathbf{1 6}$	7.5	83
$\mathbf{2 5}$	7.5	88.5
$\mathbf{3 2}$	7.5	98.5
$\mathbf{4 0}$	7.5	120.5

$\overline{\text { Motor cover material：Synthetic resin }}$

						［mm］
Size	Stroke range	A	T2	X2	L	CV
16	100st or less	169	7.5	66.5	35	43
	101st or more，200st or less	189				
25	100st or less	198.5	7.5	68.5	46	54.5
	101st or more，400st or less	223.5				
32	100st or less	220	7.5	73.5	60	68.5
	101st or more，500st or less	250				
40	100st or less	242	7.5	95.5	60	68.5
	101st or more，500st or less	272				

End male thread： $\operatorname{LEY}_{32}^{16} \stackrel{\text { 25 }}{40} \stackrel{\mathrm{~B}}{\mathrm{C}}-\square \square \mathrm{M}$
Width across flats
Size
［mm］ \mathbf{B}_{1}

Size	Stroke range	Step motor Servo motor		Step motor Servo motor	
		A		VB	
16	100st or less	207.8	208.5	103.3	104
	101st or more，200st or less	227.8	228.5		
25	100st or less	235.9	232.1	103.9	100.1
	101st or more，400st or less	260.9	257.1		
32	100st or less	259.9	－	111.4	－
	101st or more，500st or less	289.9	－		
40	100st or less	281.9	－	133.4	－
	101st or more，500st or less	311.9	－		

出華

صّ خしゃ先吉

 $\stackrel{\substack{5 \\ 4}}{\square}$

Series LEY

Step Motor (Servo/24 VDC)

Dimensions

Size	\mathbf{T}_{2}	\mathbf{X}_{2}
$\mathbf{1 6}$	7.5	124.5
$\mathbf{2 5}$	7.5	129
$\mathbf{3 2}$	7.5	141.5
$\mathbf{4 0}$	7.5	163.5

Size	Stroke range	A	T2	X2	L	CV
16	100st or less	210.5	7.5	108	35	43
	101st or more, 300st or less	230.5				
25	100st or less	239	7.5	109	46	54.4
	101st or more, 400st or less	264				
32	100st or less	263	7.5	116.5	60	68.5
	101st or more, 500st or less	293				
40	100st or less	285	7.5	138.5	60	68.5
	101st or more, 500st or less	315				

Foot					Included parts - Foot - Body mounting bolt			
					[mm]			
Size	Stroke range [mm]	A		LS	LS 1	LL	LD	LG
16	10 to 100	106.1		76.7	16.1	5.4	6.6	2.8
	101 to 300	126.1		96.7				
25	15 to 100	136.6		98.8	19.8	8.4	6.6	3.5
	101 to 400	161.6		23.8				
32	20 to 100	155.7		114	19.2	11.3	6.6	4
40	101 to 500	185.7		144				
Size	Stroke range [mm]	LH	LT	LX	LY	LZ	X	Y
16	10 to 100	24	2.3	48	40.3	62	9.2	5.8
	101 to 300							
25	15 to 100	30	2.6	57	51.5	71	11.2	5.8
	101 to 400							
32	20 to 100	36	3.2	76	61.5	90	11.2	7
40	101 to 500							

Material: Carbon steel (Chromate treated)

* The A measurement is when the unit is in the original position.

At this position, 2 mm at the end.
Note) When the motor mounting is the right or left side parallel type, the head side foot should be mounted outwards.

Dimensions

Rod flange: LEY32 $\square \square \mathrm{B}-\square \square \square \mathrm{F}$

Double clevis: LEY32 $\square \square B-\square \square \square D$

25 A
40 C

SSMC

A
Head flange: LEY16 $\square \square \mathbf{B}-\square \square \square \mathbf{G}$

A
Head flange: $\mathbf{L E Y} 25 \square \square \mathbf{B}-\square \square \square \mathbf{G}$

* Head flange is not available for the LEY32/40.

Included parts
- Flange
- Body mounting bolt

Rod/Head Flange

Size	FD	FT	FV	FX	FZ	LL	M
$\mathbf{1 6}$	6.6	8	39	48	60	2.5	-
$\mathbf{2 5}$	5.5	8	48	56	65	6.5	34
$\mathbf{3 2 , 4 0}$	5.5	8	54	62	72	10.5	40

Material: Carbon steel (Nickel plating)

Included parts
- Double clevis
- Body mounting bolt
- Clevis pin
- Retaining ring

* Refer to page 241 for details about the rod end nut and mounting bracket.
Double Clevis [mm]

Size	Stroke range [mm]	A		CL	CB	CD	CT
16	10 to 100	128		119	20	8	5
25	15 to 100	160.		150.5	-	10	5
	101 to 200	185.		175.5			
32	20 to 100	180.5		170.5	-	10	6
40	101 to 200	210.		200.5			
Size	Stroke range [mm]	CU	CW	CX	CZ	L	RR
16	10 to 100	12	18	8	16	10.5	9
25	15 to 100	14	20	18	36	14.5	10
	101 to 200						
32	20 to 100	14	22	18	36	18.5	10
40	101 to 200						

Material: Cast iron (Coating)

* The A and CL measurements are when the unit is in the original position. At this position, 2 mm at the end.

Series LEY

Accessory Mounting Brackets

Accessory Brackets/Support Brackets

Single Knuckle Joint

* If a knuckle joint is used, select the body option [end male thread].

> I-G02

Material: Carbon steel
Surface treatment: Nickel plating

I-G04

Material: Cast iron
Surface treatment: Nickel plating

Part no.	Applicable size	A	A1	E1	L1	MM	R1	\mathbf{U}_{1}	NDh10	NX
I-G02	16	34	8.5	$\square 16$	25	M8 $\times 1.25$	10.3	11.5	$8^{+0.0 .058}$	$8_{-0.4}^{-0.2}$
I-G04	25, 32, 40	42	14	ø22	30	M14 1.5	12	14	$10_{0}^{+0.058}$	$18_{-0.5}^{-0.3}$
I-G05	63	56	18	ø28	40	M18 $\times 1.5$	16	20	$14_{0}^{+0.070}$	$22_{-0.5}^{-0.3}$

Knuckle Pin (Common with double clevis pin)

Material: Carbon steel
[mm]

Mounting Brackets/Part No.

Applicable size	Foot	Flange	Double clevis
$\mathbf{1 6}$	LEY-L016	LEY-F016	LEY-D016
$\mathbf{2 5}$	LEY-L025	LEY-F025	LEY-D025
$\mathbf{3 2 , 4 0}$	LEY-L032	LEY-F032	LEY-D032
$\mathbf{6 3}$	LEY-L063	LEY-F063	LEY-D063

* When ordering foot brackets, order 2 pieces per actuator.
* Parts belonging to each bracket are as follows.

Foot: Body mounting bolt
Flange: Body mounting bolt
Double clevis: Clevis pin, Type C retaining ring for axis, Body mounting bolt

Double Knuckle Joint

Y-G02

Material: Carbon steel
Surface treatment: Nickel plating

Material: Cast iron
Surface treatment: Nickel plating

[mm]							
Part no.	Applicable size	A	A1	E_{1}	L1	MM	R1
Y-G02	16	34	8.5	$\square 16$	25	M8 x 1.25	25 10.3
Y-G04	25, 32, 40	42	16	ø22	30	M14 $\times 1.5$. 512
Y-G05	63	56	20	$ø 28$	40	M18 $\times 1.5$. 516
Part no.	Applicable size	U_{1}	NDH10	NX	NZ	L	Applicable pin part no.
Y-G02	16	11.5	$8^{+0.058}$	$8_{+0.2}^{+0.4}$	16	21	IY-G02
Y-G04	25, 32, 40	14	$10^{+0.058}$	1880.3	36	41.6	IY-G04
Y-G05	63	20	$14_{0}^{+0.070}$	$22_{+0.3}^{+0.5}$	44	50.6	IY-G05

Rod End Nut

Material: Carbon steel (Nickel plating)

							Part no.	Applicable size	\mathbf{d}	\mathbf{H}	\mathbf{B}	\mathbf{C}
NT-02	$\mathbf{1 6}$	$\mathrm{M} 8 \times 1.25$	5	13	15.0							
NT-04	$\mathbf{2 5 , 3 2 , 4 0}$	$\mathrm{M} 14 \times 1.5$	8	22	25.4							
NT-05	$\mathbf{6 3}$	$\mathrm{M} 18 \times 1.5$	11	27	31.2							

Simple Joint Brackets * The joint is not included in type A and type B mounting brackets. Therefore, it must be ordered separately.

Joint and Mounting Bracket (Type A/B)/Part No.

Floating Joints (Reere to the WEB catalog or the Best Pneumatics No. 2 for details.)

-For Male Thread/JS (Stainless steel)

- Stainless steel 304
(Appearance)

- Dust cover

Fluororubber/Silicone rubber
-For Male Thread/JA

-For Female Thread/JB

Applicable size	Thread size
$\mathbf{1 6}$	$\mathrm{M} 5 \times 0.8$
$\mathbf{2 5 , 3 2 , 4 0}$	$\mathrm{M} 8 \times 1.25$
	242

SSMC

Solid State Auto Switch Direct Mounting Style D-M9N(V)/D-M9P(V)/D-M9B(V) C €

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the former model (SMC comparison).
Using flexible cable as standard.

© Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications

Refer to SMC website for the details about products conforming to the international standards.

PLC: Programmable Logic Controller						
D-M9 \square, D-M9 \square V (With indicator light)						
Auto switch model	D-M9N	D-M9NV	D-M9P	D-M9PV	D-M9B	D-M9BV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC or less		-		24 VDC (10 to 28 VDC)	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED lights up when turned ON.					
Standards	CE marking, RoHS					

Oilproof Heavy-duty Lead Wire Specifications

Auto switch model		D-M9N \square	D-M9P \square	D-M9B \square
Sheath	Outside diameter [mm]	2.7×3.2 (ellipse)		
Insulator	Number of cores	3 cores	/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	$\varnothing 0.9$		
Conductor	Effective area [mm^{2}]	0.15		
	Strand diameter [mm]	$\varnothing 0.05$		
Minimum bending radius [mm] (Reference value)		20		

Note 1) Refer to the Best Pneumatics No. 2 for solid state auto switch common specifications. Note 2) Refer to the Best Pneumatics No. 2 for lead wire lengths.

Weight
[g]

Auto switch model			D-M9N(V)	D-M9P(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	$\mathbf{D}-M 9 B(\mathbf{V})$	
	$1 \mathrm{~m}(\mathbf{M})$	14	7	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

Dimensions

D-M9 $\square \mathbf{V}$

2－Color Indication Solid State Auto Switch Direct Mounting Style D－M9NW（V）／D－MMPW（V）／D－M9BW（V）C ϵ

Grommet

－2－wire load current is reduced （ 2.5 to 40 mA ）．
－Flexibility is 1.5 times greater than the former model（SMC comparison）．
－Using flexible cable as standard．
－The optimum operating range can be determined by the color of the light．（Red \rightarrow Green \leftarrow Red）

Precautions

Fix the auto switch with the existing screw installed on the auto switch body．The auto switch may be damaged if a screw other than the one supplied is used．

Auto Switch Specifications

Refer to SMC website for the details about products conforming to the international standards．

PLC：Programmable Logic Controller						
D－M9 \square W，D－M9 \square WV（With indicator light）						
Auto switch model	D－M9NW	D－M9NWV	D－M9PW	D－M9PWV	D－M9BW	D－M9BWV
Electrical entry	In－line	Perpendicular	In－line	Perpendicular	In－line	Perpendicular
Wiring type	3－wire				2－wire	
Output type	NPN		PNP		－	
Applicable load	IC circuit，Relay，PLC				24 VDC relay，PLC	
Power supply voltage	5，12， 24 VDC （ 4.5 to 28 V ）				－	
Current consumption	10 mA or less				－	
Load voltage	28 VDC	or less		－	24 VDC（	to 28 VDC$)$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA （ 2 V or less at 40 mA ）				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range ．．．．．．．．．．Red LED lights up． Optimum operating range ．．．．．．．．．．Green LED lights up．					
Standards	CE marking，RoHS					

Oilproof Flexible Heavy－duty Lead Wire Specifications

Auto switch model		D－M9NW \square	D－M9PW \square	D－M9BW \square
Sheath	Outside diameter［mm］		$\times 3.2$（ellipse）	
Insulator	Number of cores	3 cores（B	ue／Black）	2 cores（Brown／Blue）
	Outside diameter［mm］	$\varnothing 0.9$		
Conductor	Effective area［ mm^{2} ］	0.15		
	Strand diameter［mm］	$\varnothing 0.05$		
linimum bending radius［mm］（Reference value）		20		

Note 1）Refer to the Best Pneumatics No． 2 for solid state auto switch common specifications． Note 2）Refer to the Best Pneumatics No． 2 for lead wire lengths．

Weight ［g］

Auto switch model		D－M9NW（V）	D－M9PW（V）	D－M9BW（V）
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

Dimensions
［mm］
D－M9 $\square \mathbf{W}$
D－M9 $\square W V$

Electric Actuator/
 Rod Type

(4) Motor type*1				
Symbol	Type	Output [W]	Actuator size	Compatible drivers*2
S2	AC servo motor (Incremental encoder)	100	25	LECSA■-S1
S3	AC servo motor (Incremental encoder)	200	32	LECSA■-S3
S6	AC servo motor (Absolute encoder)	100	25	LECSB \square-S5 LECSCD-S5 LECSS \square-S5
S7	AC servo motor (Absolute encoder)	200	32	LECSB \square-S7 LECSCD-S7 LECSS $\square-S 7$

*1 For motor type S2 and S6, the compatible driver part number suffixes are S1 and S5 respectively.
*2 For details about the driver, refer to page 598.
5 Lead [mm]

Symbol	LEY25	LEY32 *
A	12	$16(20)$
B	6	$8(10)$
C	3	$4(5)$

* The values shown in () are the lead for size 32 top mounting, right/left side parallel types. (Equivalent lead which includes the pulley ratio [1.25:1])

Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

| 6 Stroke [mm] |
| :---: | :---: |
| 30 30
 to to
 500 500 |

* Refer to the applicable stroke table for details.

7 Motor option

Nil	Without option
\mathbf{B}	With lock*

* When "With lock" is selected for the top mounting and right/left side parallel types, the motor body will stick out of the end of the body for size 25 with strokes 30 mm or less. Check for interference with workpieces before selecting a model.

Mounting**

Symbol	Type	Motor mounting position	
		Top/Parallel	In-line
Nil	Ends tapped/ Body bottom tapped ${ }^{* 2}$	\bigcirc	\bigcirc
L	Foot	\bigcirc	-
F	Rod flange*2	* ${ }^{\text {* }}$	\bigcirc
G	Head flange*2	*5	-
D	Double clevis*3	\bigcirc	-

*1 Mounting bracket is shipped together, (but not assembled).
*2 For horizontal cantilever mounting with the rod flange, head flange and ends tapped, use the actuator within the following stroke range.
-LEY25: 200 mm or less •LEY32: 100 mm or less
*3 For mounting with the double clevis, use the actuator within the following stroke range.
-LEY25: 200 mm or less -LEY32: 200 mm or less
*4 Rod flange is not available for the LEY25 with stroke 30 mm and motor option "With lock".
*5 Head flange is not available for the LEY32.

Note) Please consult with SMC for non-standard strokes as they are produced as special orders.

Motor mounting position：Top／Parallel
Motor mounting position：In－line

10 Cable type＊

Nil	Without cable
S	Standard cable
R	Robotic cable（Flexible cable）

＊The motor and encoder cables are included． （The lock cable is also included when the motor with lock option is selected．）
＊Standard cable entry direction is
－Top／Parallel：（A）Axis side
－In－line：（B）Counter axis side
（Refer to page 614 for details．）

13 I／O cable length［m］＊
Nil
H
$\mathbf{~ W i t h o u t ~ c a b l e ~}$
$\mathbf{1}$

＊When＂Without driver＂is selected for driver type， only＂Nil：Without cable＂can be selected．
Refer to page 615 if I／O cable is required．
Options are shown on page 615. ．）
11 Cable length＊［m］

Nil	Without cable
2	2
5	5
A	10

＊The length of the encoder，motor and lock cables are the same．

Driver type＊

	Compatible driver	Power supply voltage［V］
Nil	Without driver	-
A1	LECSA1－S \square	100 to 120
A2	LECSA2－S \square	200 to 230
B1	LECSB1－S \square	100 to 120
B2	LECSB2－S \square	200 to 230
C1	LECSC1－S \square	100 to 120
C2	LECSC2－S \square	200 to 230
S1	LECSS1－S \square	100 to 120
S2	LECSS2－S \square	200 to 230

出誌

When the driver type is selected，the cable is included．Select cable type and cable length． Example）
S2S2：Standard cable（2 m）＋Driver（LECSS2）
S2 ：Standard cable（2 m）
Nil ：Without cable and driver

Compatible Driver

| | Pulse input type
 ／Positioning type | Pulse input type | CC－Link direct |
| :--- | :--- | :--- | :--- | :--- |
| input type | | | |

Series LEY

AC Servo Motor size

Specifications

Model				LEY25S ${ }_{6}^{2}$ (Top/Parallel)/LEY25DS ${ }_{6}^{2}$ ((n-line)			LEY32S ${ }_{7}^{3}$ (Top/Parallel)			LEY32DS ${ }_{7}^{3}$ (In-line)		
Stroke [mm] ${ }^{\text {Note 1) }}$				$\begin{gathered} 30,50,100,150,200,250, \\ 300,350,400 \end{gathered}$			$\begin{gathered} 30,50,100,150,200,250, \\ 300,350,400,450,500 \end{gathered}$			$\begin{gathered} 30,50,100,150,200,250 \\ 300,350,400,450,500 \\ \hline \end{gathered}$		
Work load [kg]			Horizontal ${ }^{\text {N0, }{ }^{\text {a }} \text { 2 }}$	18	50	50	30	60	60	30	60	60
			Vertical	8	16	30	9	19	37	12	24	46
	Pushing force [N] ${ }^{\text {Note } 3)}$ (Set value: 15 to 30\%)			65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max. ${ }^{\text {Note } 41}$		Up to 300	900	450	225	1200	600	300	1000	500	250
	speed	range	305 to 400	600	300	150						
	[mm/s]		405 to 500	-	-	-	800	400	200	640	320	160
	Pushing speed [$\mathrm{mm} / \mathrm{s}^{2}$] Note 5)			35 or less			30 or less			30 or less		
	Max. acceleration/deceleration [mm/s ${ }^{2}$]				5000		5000					
	Positioning repeatability [mm]		Basic type	± 0.02								
			High precision type	± 0.01								
	Lost motion Note 6) [mm]		Basic type	0.1 or less								
			High precision type	0.05 or less								
	Lead [mm] (including pulley ratio)			12	6	3	20	10	5	16	8	4
	ImpactNibration resistance [$\left.\mathrm{m} / \mathrm{s}^{2}\right]^{\text {Noie }}$ 7)			50/20			50/20					
	Actuation type			Ball screw + Belt (LEYD)/Ball screw (LEYCD)			Ball screw + Belt [1.25:1]			Ball screw		
	Guide type			Sliding bushing (Piston rod)			Sliding bushing (Piston rod)					
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40			5 to 40					
	Operating humidity range [\%RH]			90 or less (No condensation)			90 or less (No condensation)					
	Required co	diditions for Noie 8)	Horizontal	8 or more	31 or more	Not required	15 or more	Not required	Not required	23 or more	Not required	Not required
	"Regeneratio	on option" [kg]	Vertical	3 or more	2 or more	2 or more	6 or more	7 or more	11 or more	6 or more	7 or more	12 or more
	Motor output/Size			$100 \mathrm{~W} / \square 40$			200 W/ $\square 60$					
	Motor type			AC servo motor (100/200 VAC)			AC servo motor (100/200 VAC)					
$\frac{\mathbb{Z}}{\substack{0}}$	Encoder			Motor type S2, S3: Incremental 17-bit encoder (Resolution: 131072 p/rev) Motor type S6, S7: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)								
©	Power consumption [W] Note 9)		Horizontal	45			65			65		
			Vertical	145			175			175		
-	Standby power consumption when operating [W] Note 10)		Horizontal	2			2			2		
-			Vertical	8			8			8		
Ш	Max. instantaneous power consumption [W] ${ }^{\text {Wode }}$ (1)			445			724			724		
	Type ${ }^{\text {Note 12) }}$			Non-magnetizing lock								
㲀	Holding	force [N]		131	255	485	157	308	588	197	385	736
	Power consumption [W] at $20^{\circ} \mathrm{C}$ Note 13)			6.3			7.9			7.9		
	Rated voltage [V]			$24 \mathrm{VDC}_{-10 \%}^{0}$								

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) The maximum value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Please confirm using actual device.
Note 3) The force setting range (set values for the driver) for the pushing operation with the torque control mode, etc. Setit with reference to "Force Conversion Graph" on page 227.
Note 4) The allowable speed changes according to the stroke. Set the number of rotations according to speed. Note 5) The allowable collision speed for the pushing operation with the torque control mode, etc.
Note 6) A reference value for correcting an error in reciprocal operation.
Note 7) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.) Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in
both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 8) The work load conditions which require "Regeneration option" when operating at the maximum speed (Duty ratio: 100%). Order the regeneration option separately. For details and order numbers, refer to "Required Conditions for Regeneration Option" on pages 225 and 226.
Note 9) The power consumption (including the driver) is for when the actuator is operating.
Note 10) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 11) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating. Note 12) Only when motor option "With lock" is selected.
Note 13) For an actuator with lock, add the power consumption for the lock.

Weight

Product Weight

Series	LEY25S \square (Motor mounting position: Top/Parallel)									LEY32S \square (Motor mounting position: Top/Parallel)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
흥 응 Incremental encode	1.31	1.38	1.55	1.81	1.99	2.16	2.34	2.51	2.69	2.42	2.53	2.82	3.29	3.57	3.85	4.14	4.42	4.70	4.98	5.26
\bigcirc Absolute encoder	1.37	1.44	1.61	1.87	2.05	2.22	2.40	2.57	2.75	2.36	2.47	2.76	3.23	3.51	3.79	4.08	4.36	4.64	4.92	5.20
Series	LEY25DS \square (Motor mounting position: In-line)									LEY32DS \square (Motor mounting position: In-line)										
Stroke [mm]	30	50	100	150	200	250	300	350	400	30	50	100	150	200	250	300	350	400	450	500
히요 Incremental encoder	1.34	1.41	1.58	1.84	2.02	2.19	2.37	2.54	2.72	2.44	2.55	2.84	3.31	3.59	3.87	4.16	4.44	4.72	5.00	5.28
을 Absolute encode	1.40	1.47	1.64	1.90	2.08	2.25	2.43	2.60	2.78	2.38	2.49	2.78	3.25	3.53	3.81	4.10	4.38	4.66	4.94	5.22

Additional Weight

Additional Weight		[kg]	
Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	Incremental encoder	0.20	0.40
	Absolute encoder	0.30	0.66
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot (2 sets including mounting bolt)	0.08	0.14	
Rod flange (including mounting bolt)	0.17	0.20	
Head flange (including mounting bolt)			
Double clevis (including pin, retaining ring and mounting bolt)	0.16	0.22	

Construction
Motor top mounting type：LEY ${ }_{32}^{25}$

In－line motor type： $\operatorname{LEY}_{32}{ }^{25}$ D

No．	Description	Material	Note
$\mathbf{2 4}$	Seal	NBR	
$\mathbf{2 5}$	Retaining ring	Steel for spring	Phosphate coated
$\mathbf{2 6}$	Motor adapter	Aluminum alloy	Coating
$\mathbf{2 7}$	Motor	-	
$\mathbf{2 8}$	Motor block	Aluminum alloy	Coating
29	Hub	Aluminum alloy	
$\mathbf{3 0}$	Spider	Urethane	
$\mathbf{3 1}$	Socket（Male thread）	Free cutting carbon steel	Nickel plating
$\mathbf{3 2}$	Nut	Alloy steel	Zinc chromated

Component Parts

No．	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
3	Ball screw nut	Resin／Alloy steel	
$\mathbf{4}$	Piston	Aluminum alloy	
5	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminum alloy	
$\mathbf{7}$	Housing	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	POM	
9	Socket	Free cutting carbon steel	Nickel plating
10	Connected shaft	Free cutting carbon steel	Nickel plating
11	Bushing	Lead bronze cast	
12	Bumper	Urethane	
13	Bearing	-	
14	Return box	Aluminum die－cast	Coating
15	Return plate	Aluminum die－cast	Coating
16	Magnet	-	
17	Wear ring holder	Stainless steel	Stroke 101 mm or more
18	Wear ring	POM	Stroke 101 mm or more
19	Screw shaft pulley	Aluminum alloy	
20	Motor pulley	Aluminum alloy	
21	Belt	-	
22	Bearing stopper	Aluminum alloy	
23	Parallel pin	Stainless steel	

Replacement Parts（Top／Parallel only）／Belt

No．	Size	Order no．
21	25	LE－D－2－2
	32	LE－D－2－4

年芭

\section*{| Replacement Parts／Grease Pack | |
| :---: | :---: |
| Applied portion | Order no． |
| Piston rod | GR－S－010 $(10 \mathrm{~g})$ |
| | $G R-S-020(20 \mathrm{~g})$ |}

＊Apply grease on the piston rod periodically．
Grease should be applied at 1 million cycles or 200 km ，whichever comes first．

Series LEY

Dimensions: Motor Top/Parallel

Note 1) Range within which the rod can move. Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod.
Note 2) The direction of rod end width across flats ($\square \mathrm{K}$) differs depending on the products.

Size	Stroke range [mm]	A	B	C	D	EH	EV	H		J	K	L	M	O_{1}		R	S
25	15 to 100	130.5	116	13	20	44	45.5	M8 $\times 1.25$		24	17	14.5	34	M5 x 0.8		8	46
	105 to 400	155.5	141														
32	20 to 100	148.5	130	13	25	51	56.5	M8 x 1.25		31	22	18.5	40	M6 x 1.0		10	60
	105 to 500	178.5	160														
Size	Stroke range [mm]	T	U	Y	V	Incremental encoder						Absolute encoder					
						Without lock			With lock			Without lock			With lock		
						W	X	Z	W	X	Z	W	X	Z	W	X	Z
	15 to 100	92	1	26.5	40	87	120	14.1	123.9	156.9	15.8	82.4	115.4	14.1	123.5	156.5	15.8
25	105 to 400																
32	20 to 100	118	1	34	60	88.2	128.2	17.1	116.8	156.8	17.1	76.6	116.6	17.1	116.1	156.1	17.1
	105 to 500																

Body Bottom Tapped [mm]

Size	Stroke range [mm]	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100				41						
	101 to 124						75				
	125 to 200			59	49.5						
	201 to 400			76	58						
32	20 to 39	25	55	22	36	30		M6 x 1	8.5	5	6
	40 to 100						50				
	101 to 124			36	43		80				
	125 to 200			53	51.5						
	201 to 500			70	60						

Dimensions：Motor Top／Parallel

Motor left side parallel type： $\operatorname{LEY}_{32}{ }^{25} \mathrm{~L}$

$[\mathrm{mm}]$			
Size	\mathbf{S}_{1}	$\mathbf{T}_{\mathbf{2}}$	\mathbf{U}
$\mathbf{2 5}$	47	91	1
$\mathbf{3 2}$	61	117	1

Motor right side parallel type： $\operatorname{LEY}_{32}^{25} R$

Note）When the motor is mounted on the left or right side in parallel，the groove for auto switch on the side to which the motor is mounted is hidden．

先

Series LEY

Dimensions: In-line Motor

Note 1) Range within which the rod can move.
Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod.
Note 2) The direction of rod end width across flats $(\square \mathrm{K})$ differs depending on the products.

Body Bottom Tapped

Size	Stroke range [mm]	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 39	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100									
	101 to 124		42	41		75				
	125 to 200		59	49.5						
	201 to 400		76	58						
32	20 to 39	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100					50				
	101 to 124					80				
	125 to 200		53	51.5						
	201 to 500		70	60						

Dimensions

End male thread： $\operatorname{LEY}_{32}^{25} \stackrel{A}{\square}-\square \square M$

＊Refer to page 241 for details about the rod end nut and mounting bracket．
Note）Refer to the precautions on page 296 when mounting end brackets such as knuckle joint or workpieces．

Size	\mathbf{B}_{1}	\mathbf{C}_{1}	\mathbf{H}_{1}	\mathbf{L}_{1}	\mathbf{L}_{2}	MM
$\mathbf{2 5}$	22	20.5	8	38	23.5	$\mathrm{M} 14 \times 1.5$
$\mathbf{3 2}$	22	20.5	8	42.0	23.5	$\mathrm{M} 14 \times 1.5$

＊The L_{1} measurement is when the unit is in the original position．At this position， 2 mm at the end．

Outward mounting

Oot［mm］														
Size	Stroke range ［mm］	A	LS	LS ${ }_{1}$	LL	LD	LG	LH	LT	LX	LY	LZ	X	Y
25	15 to 100	136.6	98.8	19.8	8.4	6.6	3.5	30	2.6	57	51.5	71	11.2	5.8
	101 to 400	161.6	123.8											
32	20 to 100	155.7	114	19.2	11.3	6.6	4	36	3.2	76	61.5	90	11.2	7
	101 to 500	185.7	144											

Material：Carbon steel（Chromate treated）
＊The A measurement is when the unit is in the Z－phase first detecting position．At this position， 2 mm at the end．
Note）When the motor mounting is the right or left side parallel type，the head side foot should be mounted outwards．
m］

Series LEY

Dimensions

Rod flange: $\operatorname{LEY}_{32}{ }^{25} \stackrel{\mathrm{~A}}{\mathrm{~B}} \stackrel{\square}{\mathrm{C}} \square \square \mathrm{F}$

Head flange: LEY25 $\square \square \mathbf{B}-\square \square \square \mathbf{G}$

Rod/Head Flange							
Size	FD	FT	FV	FX	FZ	LL	M
$\mathbf{2 5}$	5.5	8	48	56	65	6.5	34
$\mathbf{3 2}$	5.5	8	54	62	72	10.5	40

Material: Carbon steel (Nickel plating)

Double clevis: $\operatorname{LEY}_{32}{ }^{25} \square \square \mathrm{~B}-\square \square \square \mathrm{D}$

Included parts

- Double clevis
- Body mounting bolt
- Clevis pin
- Retaining ring
* Refer to page 241 for details about the rod end nut and mounting bracket.
Double Clevis
[mm]

Size	Stroke range [mm $]$	A	CL	CD	CT
$\mathbf{2 5}$	15 to 100	160.5	150.5	10	5
	101 to 200	185.5	175.5		
	20 to 100	180.5	170.5	6	
	101 to 200	210.5	200.5		

Size	Stroke range [mm]	CU	CW	CX	CZ	L	RR
25	15 to 100	14	20	18	36	14.5	10
	101 to 200						
32	20 to 100	14	22	18	36	18.5	10
	101 to 200						

Material: Cast iron (Coating)

* The A and CL measurements are when the unit is in the Z-phase first detecting position. At this position, 2 mm at the end.

Electric Actuator/
 Rod Type
 Dust-tight/Water-jet-proof (IP65 Equivalent)
 * Select options
 LEY63

How to Order

(1) Accuracy
Nil
H
High precision type

3 Motor mounting position

Nil	Top mounting
R	Right side parallel
L	Left side parallel
D	In-line

4 Motor type

Symbol	Type	Output $[W]$	Actuator size	Compatible driver
S4	AC servo motor (Incremental encoder)	400	63	LECSA2-S4
S8	AC servo motor (Absolute encoder)	400	63	LECSB2-S8 LECSC2-S8 LECSS2-S8

6 Stroke $[\mathrm{mm}]$	
$\mathbf{1 0 0}$	100
to	to
800	800

Dust-tight/Water-jet-proof

Nil	IP5x equivalent (Dust-protected)
P	IP65 equivalent (Dust-tight/Water-jet-proof)/ With vent hole tap

8 Motor option

Nil	Without option
B	With lock

(5) Lead [mm]

Symbol	LEY63
A	20
B	10
C	5
L	2.86^{*}

* Screw lead 5 mm , Pulley ratio [4:7] equivalent lead
* Only available for top mounting and right/left side parallel types.

9 Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread $(1$ rod end nut is included.)

* When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water.
* The fitting and tubing should be provided separately by the customer. Select [Applicable tubing O.D.: ø4 or more, Connection thread: Rc1/8]
* Cannot be used in environments exposed to cutting oil etc. Take suitable protective measures.

10 Mounting*1				*1 Mounting bracket is shipped together, (but not assembled).
Symbol	Type	Motor mounting position		
Symbol		Top/Parallel	In-line	
Nil	Ends tapped/ Body bottom tapped ${ }^{\text {*2 }}$	\bigcirc	\bigcirc	rod flange and ends tapped, use the actuator within the following stroke range.
L	Foot	\bigcirc	-	LEY63: 400 mm or less
F	Rod flange*2	\bigcirc	\bigcirc	*3 For mounting with the double clevis, use the actuator within the following stroke range
D	Double clevis*3	\bigcirc	-	

11 Cable type ${ }^{\text {Note 1) }}$

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

Note 1) The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)
12 Cable length $^{\text {Note 2) }}$ [m]

Nil	Without cable
$\mathbf{2}$	2
5	5
\mathbf{A}	10

Note 2) The length of the encoder, motor and lock cables are the same.
14 I/O cable length $[\mathrm{m}]^{*}$

Nil	Without cable
H	Without cable (Connector only)
$\mathbf{1}$	1.5

* When "Without driver" is selected for driver type, only
"Nil: Without cable" can be selected.
Refer to page 615 if I/O cable is required.
(Options are shown on page 615.)

13 Driver type

	Compatible driver	Power supply voltage
Nil	Without driver	
A2	LECSA2/Pulse input (Incremental encoder)	200 V to 230 V
B2	LECSB2/Pulse input (Absolute encoder)	200 V to 230 V
C2	LECSC2/CC-Link (Absolute encoder)	200 V to 230 V
S2	LECSS2/SSCNETIII (Absolute encoder)	200 V to 230 V

When the driver type is selected, the cable is included. Select cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver

* Applicable stroke table

ModelStroke $[\mathrm{mm}]$	100	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	$\mathbf{8 0 0}$	Manufacturable stroke range
LEY63	-		0						

Note) Please consult with SMC for non-standard strokes as they are produced as special orders.

Specifications

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) The maximum value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Please confirm using actual device.
Note 3) Set values for the driver.
Note 4) The force setting range (set values for the driver) for the pushing operation with the torque control mode, etc. The pushing force and duty ratio change according to the set value. Set it with reference to "Force Conversion Graph" on page 227.
Note 5) The allowable speed changes according to the stroke. Set the number of rotations according to speed.
Note 6) The allowable collision speed for the pushing operation with the torque control mode, etc.
Note 7) A reference value for correcting an error in reciprocal operation.
Note 8) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 9) The work load conditions which require "Regeneration option" when operating at the maximum speed (Duty ratio: 100\%).
Note 10) The power consumption (including the driver) is for when the actuator is operating.
Note 11) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 12) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 13) Only when motor option "With lock" is selected.
Note 14) For an actuator with lock, add the power consumption for the lock.

Weight

Product Weight									
Stroke $[\mathrm{mm}]$		LEY63S \square (Motor mounting position: Top/Parallel)							
		100	200	300	400	500	600	700	800
$\begin{array}{\|l\|} \hline 0 \\ 02 \\ 0 \\ 0 . \\ 0 . \\ 20 \end{array}$	Incremental encoder	5.4	6.6	8.3	9.4	10.5	12.2	13.4	14.5
	Absolute encoder	5.5	6.7	8.4	9.5	10.6	12.3	13.5	14.6
Series		LEY63DS $\square \square$ (Motor mounting position: In-line)							
	Stroke [mm]	100	200	300	400	500	600	700	800
	Incremental encoder	5.6	6.7	8.4	9.6	10.7	12.4	13.5	14.7
	Absolute encoder	5.7	6.8	8.5	9.7	10.8	12.5	13.6	14.8

Additional Weight
Size 63 Lock Incremental encoder 0.4 Absolute encoder 0.6 Male thread 0.12 Nut 0.04 Foot (2 sets including mounting bolt) 0.26 Rod flange (including mounting bolt) 0.51 Double clevis (including pin, retaining ring and mounting bolt) 0.58

Series LEY

Construction

Motor top mounting type: LEY63

In-line motor type: LEY63D

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw shaft	Alloy steel	
$\mathbf{3}$	Ball screw nut	Resin/Alloy steel	
4	Piston	Aluminum alloy	
5	Piston rod	Stainless steel	Hard chrome plating
6	Rod cover	Aluminum alloy	
$\mathbf{7}$	Bearing holder	Aluminum alloy	
$\mathbf{8}$	Rotation stopper	Resin	
9	Socket	Free cutting carbon steel	Nickel plating
10	Bushing	Lead bronze cast	
11	Bearing	-	
12	Return box	Aluminum alloy	Coating
13	Return plate	Aluminum alloy	Coating
14	Magnet	-	
15	Wear ring holder	Stainless steel	

No.	Description	Material	Note
$\mathbf{1 6}$	Wear ring	Resin	
$\mathbf{1 7}$	Screw shaft pulley	Aluminum alloy	
$\mathbf{1 8}$	Motor pulley	Aluminum alloy	
19	Belt	-	
20	Lock nut	Alloy steel	Black dyed
21	Seal	NBR	
$\mathbf{2 2}$	Retaining ring	Steel for spring	
$\mathbf{2 3}$	Motor adapter	Aluminum alloy	Coating
24	Motor	-	
25	Socket (Male thread)	Free cutting carbon steel	Nickel plating
26	Nut	Alloy steel	Trivalent chromated
27	Motor block	Aluminum alloy	Coating
28	Spacer A	Stainless steel	
29	Hub	Aluminum alloy	
30	Spider	Urethane	

Replacement Parts (Top/Parallel only)/Belt

No.	Size	Lead	Order no.
19	63	A/B/C	LE-D-2-5
		L	LE-D-2-6

Replacement Parts/Grease Pack

Applied portion	Order no.
Piston rod	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

[^1]
Dimensions：Motor Top／Parallel

Note 1）Range within which the rod can move．
Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod．
Note 2）The direction of rod end width across flats $(\square \mathrm{K})$ differs depending on the products．

Section XX details

＊When using the dust－tight／water－jet－proof（IP65 equivalent），correctly mount the fitting and tubing to the vent hole tap，and then place the end of the tubing in an area not exposed to dust or water．The fitting and tubing should be provided separately by the customer．
Select［Applicable tubing O．D．：$\varnothing 4$ or more，Connection thread：Rc1／8］．
IP65 equivalent（Dust－tight／Water－jet－proof）：LEY63 $\square \square \square-\square \mathbf{P}$
（View ZZ）

Size	Stroke range ［mm］	A	B		D	EH	EV	H	J	K	L	M	O_{1}	R	S	Y
63	Up to 200	192.6	155.2	2	40	76	82	M16 x 2	44	36	37.4	60	M8 x 1.25	16	80	32.2
	205 to 500	227.6	190.2													
	505 to 800	262.6	225.2													
Size	Stroke range ［mm］	T	U	V	Incremental encoder						Absolute encoder					
					Without lock			With lock			Without lock			With lock		
					W	X	Z	W	X	Z	W	X	Z	W	X	Z
63	Up to 200	146	4	60	110.2	150.2	$\begin{gathered} 15.6 \\ (16.6)^{*} \end{gathered}$	138.8	178.8	$\begin{gathered} 15.6 \\ (16.6)^{*} \end{gathered}$	98.5	138.5	$\begin{gathered} 15.6 \\ (16.6)^{*} \end{gathered}$	138	178	$\begin{gathered} 15.6 \\ (16.6)^{*} \end{gathered}$
	205 to 500															
	505 to 800															

＊The values in（ ）are the dimensions when L is selected for screw lead．

Body Bottom Tapped

Series LEY

Dimensions: Motor Top/Parallel

Motor left side parallel type: LEY63L

Motor right side parallel type: LEY63R

$[\mathrm{mm}]$			
Size	$\mathbf{S}_{\mathbf{1}}$	$\mathbf{T}_{\mathbf{2}}$	\mathbf{U}
$\mathbf{6 3}$	84	142	4

Note) When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

Dimensions：In－line Motor

Note 1）Range within which the rod can move．Make sure a workpiece mounted on the rod does not interfere with the workpieces and facilities around the rod．
Note 2）The direction of rod end width across flats（ $\square \mathrm{K}$ ）differs depending on the products．

Size	Stroke range ［mm］	C	D	EH	EV	H	J	K	L	M	O1	R	S	T	U
63	Up to 200	21	40	76	82	M16 x 2	44	36	37.4	60	M8 x 1.25	16	78	83	5
	205 to 500														
	505 to 800														
Size	Stroke range ［mm］	B	V	Incremental encoder						Absolute encoder					
				Without lock			With lock			Without lock			With lock		
				A	W	Z	A	W	Z	A	W	Z	A	W	Z
63	Up to 200	190.7	60	338.3	110.2	8.1	366.9	138.8	8.1	326.6	98.5	8.1	366.1	138	8.1
	205 to 500	225.7		373.3			401.9			361.6			401.1		
	505 to 800	260.7		408.3			436.9			396.6			436.1		

Body Bottom Tapped

Size	Stroke range ［mm］	MA	MC	MD	MH	ML	MO	MR	XA	XB
63	50 to 74	38	24	50	44		M8 x 1.25	10	6	7
	75 to 124		45	60.5		65				
	125 to 200		58	67						
	201 to 500		86	81		100				
	501 to 800		86	81		135				

IP65 equivalent（Dust－tight／Water－jet－proof）：LEY63D $\square \square-\square \mathbf{P}$
＊When using the dust－tight／water－jet－proof（IP65 equivalent），correctly mount the fitting and tubing to the vent hole tap，and then place the end of the tubing in an area not exposed to dust or water．The fitting and tubing should be provided separately by the customer．
Select［Applicable tubing O．D．：$\varnothing 4$ or more，Connection thread：Rc1／8］．
（View ZZ）

Dimensions

End male thread: LEY63 $\square \square \square-\square \square \mathbf{M}$

* The measurement 76.4 is when the unit is in the Z-phase detecting position. At this position, 4 mm at the end.

Foot: LEY63 $\square \square \square-\square \square L$

Outward mounting

Included parts
- Foot
- Body mounting bolt

Material: Carbon steel (Chromate treated)

* The overall length is when the unit is in the Z-phase first detecting position. At this position, 4 mm at the end.
Note) When the motor mounting is the right or left side parallel type, the head side foot should be mounted outwards.

	$[\mathrm{mm}]$	
Stroke range $[\mathrm{mm}]$	LA	LS
50 to 200	200.8	133.2
201 to 500	235.8	168.2
501 to 800	270.8	203.2

Rod flange: LEY63 $\square \square \square-\square \square$ F

Included parts

- Flange
- Body mounting bolt

Material: Carbon steel (Nickel plating)

* When the unit is in the Z-phase first detecting position. At this position, 4 mm at the end.

Double clevis: LEY63 $\square \square \square-\square \square D$

		$[\mathrm{mm}]$
Stroke range $[\mathrm{mm}]$	DA	CL
50 to 200	236.6	222.6
201 to 500	271.6	257.6
501 to 800	306.6	292.6

Material: Cast iron (Coating)

* The overall length is when the unit is in the Z-phase first detecting position. At this position, 4 mm at the end.

[^0]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^1]: Apply grease on the piston rod periodically.
 Grease should be applied at 1 million cycles or 200 km , whichever comes first.

