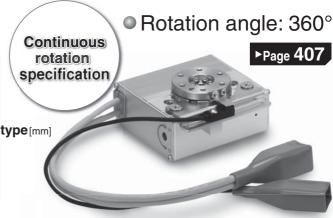
## Electric Rotary Table ( : 91) us Series LER

RoHS


#### Step Motor (Servo/24 VDC)





| Basic type [mm] |    |
|-----------------|----|
| Model           | Н  |
| LER10           | 42 |
| LER30           | 53 |
| LER50           | 68 |

High precision type[mm] Model LERH10 LERH30 62 LERH50







Shock-less/High speed actuation

Max. speed: 420°/sec (7.33 rad/sec) Max. acceleration/deceleration: 3000°/sec<sup>2</sup> (52.36 rad/sec<sup>2</sup>)

**Positioning repeatability:**  $\pm 0.03^{\circ}$  (High precision type) Repeatability at the end:  $\pm 0.01^{\circ}$  (Pushing control/With external stopper)

Rotation angle

360°, 320° (310°), 180°, 90° The value indicated in brackets shows the value for the LER10.

Possible to set speed, acceleration/deceleration, and position. Max. 64 points

Energy-saving product Automatic 40% power reduction after the table has stopped.

|   | Circ | Rotating to | orque [N·m] | Max. sp | eed [°/s]   | Dana      |
|---|------|-------------|-------------|---------|-------------|-----------|
|   | Size | Basic       | High torque | Basic   | High torque | Page      |
|   | 10   | 0.22        | 0.32        |         |             |           |
| S | 30   | 0.8         | 1.2         | 420     | 280         | ►Page 395 |
| - | 50   | 6.6         | 10          |         |             |           |

\* Value when an external stopper is mounted.

## Step Motor (Servo/24 VDC) Controller/Driver

#### Step data input type

Series LECP6

- 64 points positioning
- · Input using controller setting kit or teaching box



▶CC-Link direct input type

Series LECPMJ

\* Not applicable to CE.



## **▶**Programless

Series LECP1

- 14 points positioning
- Control panel setting



## Pulse input type



▶ Page **538** 

**SMC** 

빌 LEN

LEFS LEFB

LEJS LEJB

LEY LEYG

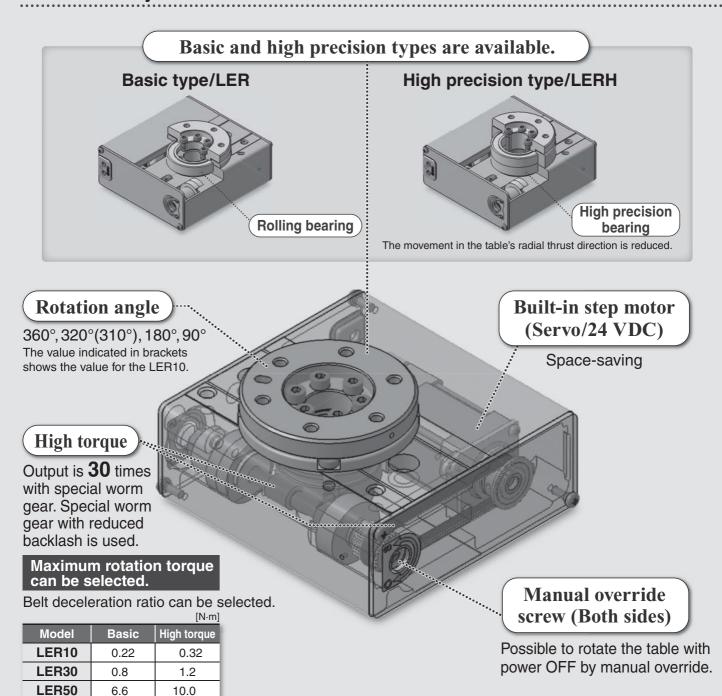
LES LESH

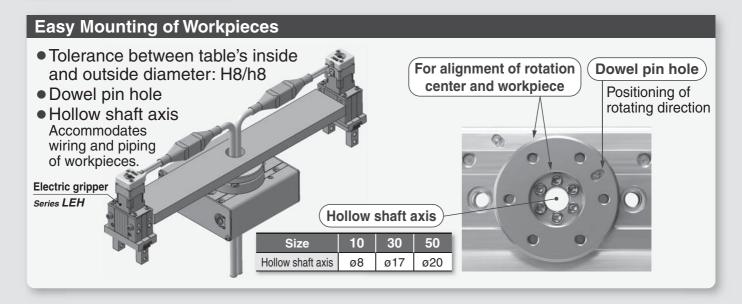
LEPY LEPS

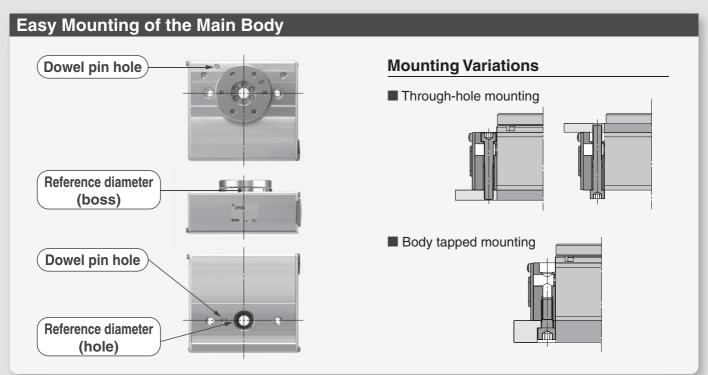
ᄪ

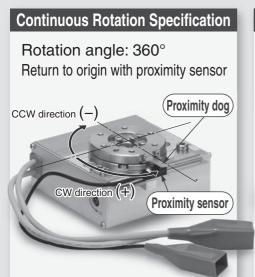
LEY-X5 11-LEFS

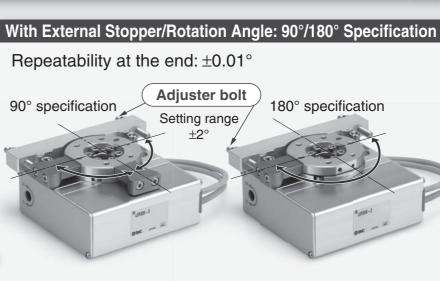
11-LEJS


25A-


| TECSS-T | LECS | LEC |


LECYM


Motorless


390













LEFS LEFB

LEJS LEJB

빌 LEM

LEY LEYG

LEPY LEPS LER

ᄪ

LEY-X5

11-LEFS 11-LEJS

25A-

LECYM LECSS-T LECS LEC

Motorless



|                           | Model Selection                         | Page 395 |
|---------------------------|-----------------------------------------|----------|
| Step Motor (Servo/24 VDC) |                                         |          |
| Electric Rotary Tabl      | e Series LER                            |          |
| 1                         | How to Order                            | Page 401 |
|                           | Specifications                          | Page 402 |
|                           | Construction                            | Page 403 |
|                           | Dimensions                              | Page 404 |
|                           |                                         |          |
|                           |                                         |          |
|                           |                                         |          |
| Step Motor (Servo/24 VDC) | Wasting Dates: Table at 150             |          |
| Continuous Rotation Spec  | Electric Rotary Table Series LER        |          |
|                           | How to Order                            | Page 407 |
| E                         | Specifications                          | Page 408 |
|                           | Construction                            | Page 409 |
|                           | Dimensions                              | Page 410 |
|                           |                                         |          |
|                           |                                         |          |
|                           | Specific Product Precautions            | Page 413 |
|                           |                                         |          |
| Step Motor (Servo/2       | 4 VDC) Controller                       |          |
|                           | Step Data Input Type/Series LECP6       | Page 551 |
|                           | Controller Setting Kit/LEC-W2           | Page 560 |
|                           | Teaching Box/ <i>LEC-T1</i>             | Page 561 |
|                           | CC-Link Direct Input Type/Series LECPMJ | Page 591 |
|                           | Controller Setting Kit/LEC-W2           | Page 595 |
|                           | Teaching Box/ <i>LEC-T1</i>             | Page 596 |
|                           | Gateway Unit/Series LEC-G               | Page 563 |
|                           | Programless Controller/Series LECP1     | Page 567 |
|                           | Step Motor Driver/Series LECPA          | Page 581 |
|                           | Controller Setting Kit/LEC-W2           | Page 588 |
|                           | Teaching Box/ <i>LEC-T1</i>             | Page 589 |

## **Rotary Table**

## Series LER



LEFS

LEJS

Ę

LEM

LEYG

LEPY

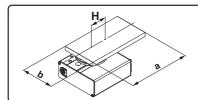
ᄪ

11-LEJS 11-LEFS LEY-X5

25A-

Motorless LECYU LECSS-T LECS□ LEC□

### Step Motor (Servo/24 VDC) **Electric Rotary Table** Series LER


## **Model Selection**

Series LER ▶ Page 401 Continuous Rotation Specification Series LER-1 ▶ Page 407



#### Selection Procedure

Operating conditions



Electric rotary table: LER30J Mounting position: Horizontal Load type: Inertial load Ta

Configuration of load: 150 mm x 80 mm (Rectangular plate)

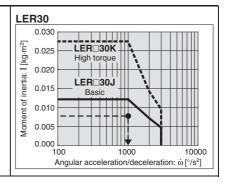
Rotation angle θ: 180°

Angular acceleration/ angular deceleration  $\dot{\omega}$ : 1000°/sec<sup>2</sup> Angular speed ω: 420°/sec Load mass [m]: 2.0 kg

Distance between shaft and center

of gravity H: 40 mm

### Step1 Moment of inertia—Angular acceleration/deceleration


- 1) Calculation of moment of inertia
- 2 Moment of inertia—Check the angular acceleration/deceleration Select the target model based on the moment of inertia and angular acceleration and deceleration with reference to the (Moment of Inertia -Angular Acceleration/Deceleration graph).

Formula

 $I = m x (a^2 + b^2)/12 + m x H^2$ 

#### Selection example

 $I = 2.0 \times (0.15^2 + 0.08^2)/12 + 2.0 \times 0.04^2$  $= 0.00802 \text{ kg} \cdot \text{m}^2$ 

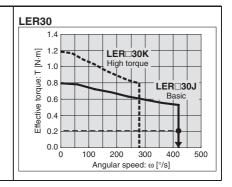


## Step2 Necessary torque

- 1 Load type
  - Static load: Ts
  - · Resistance load: Tf
  - Inertial load: Ta
- 2 Check the effective torque

Confirm whether it is possible to control the speed based on the effective torque corresponding with the angular speed with reference to the (Effective Torque—Angular Speed graph).

#### Formula


Effective torque ≥ Ts Effective torque  $\geq$  Tf x 1.5 Effective torque ≥ Ta x 1.5

#### Selection example

Inertial load: Ta

Ta x 1.5 =  $I x \dot{\omega} x 2 \pi/360 x 1.5$ = 0.00802 x 1000 x 0.0175 x 1.5

= 0.21 N·m



#### Step3 Allowable load

- 1) Check the allowable load
  - Radial load
  - Thrust load
  - Moment

#### Formula

Allowable thrust load ≥ m x 9.8 Allowable moment ≥ m x 9.8 x H

#### Selection example

Thrust load

Formula

Settling time

Cycle time

2.0 x 9.8 = 19.6 N < Allowable load OK

Allowable moment

2.0 x 9.8 x 0.04

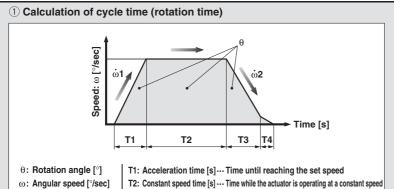
Selection example

· Constant speed time

= 0.009 sec

= 0.784 N·m < Allowable moment OK

Constant speed time  $T2 = \{\theta - 0.5 \times \omega \times (T1 + T3)\}/\omega$ 


• Angular acceleration time T1 = 420/1000 = 0.42 sec • Angular deceleration time T3 = 420/1000 = 0.42 sec

 $T2 = {180 - 0.5 \times 420 \times (0.42 + 0.42)}/420$ 

T4 = 0.2 (sec)T = T1 + T2 + T3 + T4

Angular acceleration time  $T1 = \omega/\dot{\omega}1$ Angular deceleration time T3 = ω/ώ2

#### Step4 Rotation time



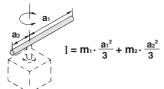
ώ1: Angular acceleration [°/sec²]

 $\dot{\omega}$ 2: Angular deceleration [°/sec²]

T3: Deceleration time [s]... Time from constant speed operation to stop

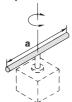
T4: Settling time [s] ... Time until in position is completed • Cycle time

T = T1 + T2 + T3 + T4= 0.42 + 0.009 + 0.42 + 0.2


= 1.049 (sec)

### Formulas for Moment of Inertia (Calculation of moment of inertia I)

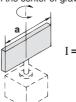
I: Moment of inertia [kg·m²] m: Load mass [kg]


#### 1. Thin bar

Position of rotation shaft: Perpendicular to a bar through one end



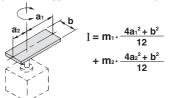
#### 2. Thin bar


Position of rotation shaft: Passes through the center of gravity of the bar.



 $I = m \cdot \frac{a^2}{12}$ 

#### 3. Thin rectangular plate (cuboid)


Position of rotation shaft: Passes through the center of gravity of a plate.



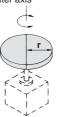
 $I = m \cdot \frac{a^2}{12}$ 

#### 4. Thin rectangular plate (cuboid)

Position of rotation shaft: Perpendicular to the plate and passes through one end. (The same applies to thicker cuboids.)



#### 5. Thin rectangular plate (cuboid)


Position of the rotation shaft: Passes through the center of gravity of the plate and perpendicular to the plate. (The same applies to thicker cuboids.)

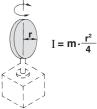


$$I = m \cdot \frac{a^2 + b^2}{12}$$

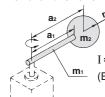
#### 6. Cylindrical shape (including a thin disk)

Position of rotation shaft: Center axis




#### 7. Sphere Position of rotation shaft: Diameter



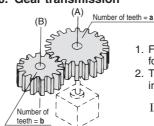

 $I = m \cdot \frac{2r^2}{r}$ 

#### 8. Thin disk (mounted vertically) Position of rotation shaft:

Diameter



#### 9. When a load is mounted on the end of the lever




 $+ m_2 \cdot a_2^2 + K$ 

(Ex.) Refer to 7 when the shape of m₂ is spherical.

$$K = m_2 \cdot \frac{2r^2}{5}$$

#### 10. Gear transmission



- 1. Find the moment of inertia  $I_{\mbox{\tiny B}}$ for the rotation of shaft (B).
- 2. Then, replace the moment of inertia  $I_{\mbox{\tiny B}}$  around the shaft (A) by  $I_{\mbox{\tiny A}}$ ,

$$I_{\text{A}} = (\frac{\mathbf{a}}{\mathbf{b}})^2 \cdot I_{\text{B}}$$

## **Load Type**

|                                                                                                                           | Load type                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Static load: Ts                                                                                                           | Resistance load: Tf                                                                                                                                                                                                                                                           | Inertial load: Ta                                                                                                                                                                                                                                                                                                                                                                                                                |
| Only pressing force is necessary. (e.g. for clamping)                                                                     | Gravity or friction force is applied to rotating direction.                                                                                                                                                                                                                   | Rotate the load with inertia.                                                                                                                                                                                                                                                                                                                                                                                                    |
| L F                                                                                                                       | Gravity is applied. Friction force is applied.                                                                                                                                                                                                                                | Center of rotation and center of gravity of the load are concentric.  Rotation shaft is vertical (up and down).                                                                                                                                                                                                                                                                                                                  |
| Ts = F·L  Ts: Static load [N·m]  F: Clamping force [N]  L: Distance from the rotation center to the clamping position [m] | Gravity is applied to rotating direction.  Tf = m·g·L  Tf: Resistance load [N·m]  m: Load mass [kg]  g: Gravitational acceleration 9.8 [m/s²]  L: Distance from the rotation center to the point of application of the gravity or friction force [m]  μ: Friction coefficient | $ \begin{aligned} & \textbf{Ta} = I \cdot \dot{\omega} \cdot \textbf{2} \; \pi / 360 \\ & (\textbf{Ta} = I \cdot \dot{\omega} \cdot \textbf{0.0175}) \end{aligned} $ $ \begin{aligned} & \textbf{Ta} : \; & \text{Inertial load [N·m]} \\ & I : \; & \text{Moment of inertia [kg·m²]} \\ & \dot{\omega} : \; & \text{Angular acceleration/deceleration [°/sec²]} \\ & \omega : \; & \text{Angular speed [°/sec]} \end{aligned} $ |

- Resistance load: Gravity or friction force is applied to rotating direction. Ex. 1) Rotation shaft is horizontal (lateral), and the rotation center
  - and the center of gravity of the load are not concentric.
- Ex. 2) Load moves by sliding on the floor.

Necessary torque: T = Ts

- \* The total of resistance load and inertial load is the necessary torque. T = (Tf + Ta) x 1.5
- Not resistance load: Neither gravity or friction force is applied to rotating direction.
- Ex. 1) Rotation shaft is vertical (up and down).
- Ex. 2) Rotation shaft is horizontal (lateral), and rotation center and the center of gravity of the load are concentric.
  - \* Necessary torque is inertial load only. T = Ta x 1.5

Note 1) To adjust the speed, margin is necessary for Tf and Ta.

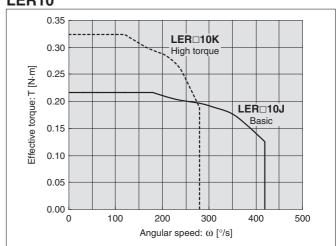
Necessary torque: **T = Ta x 1.5** Note 1)

Necessary torque: T = Tf x 1.5 Note 1)

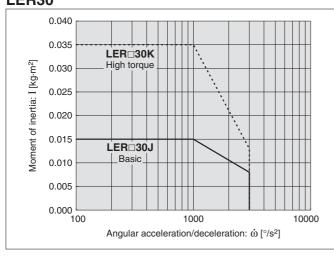
LEFS LEFB

LEN

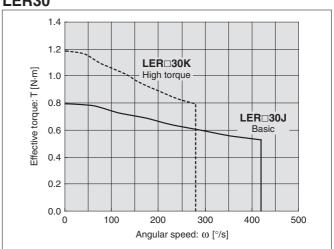



## For Step Motor (Servo/24 VDC) LECP6, LECP1, LECPMJ

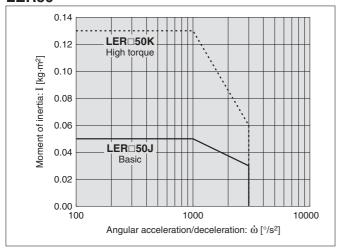
## Moment of Inertia—Angular Acceleration/Deceleration


#### LER<sub>10</sub> 0.0045 0.0040 LER□10K High torque 0.0035 Moment of inertia: I [kg⋅m²] 0.0030 0.0025 0.0020 LER<sub>□10</sub>J 0.0015 0.0010 0.0005 0.0000 1000 10000 Angular acceleration/deceleration: $\dot{\omega}$ [°/s²]

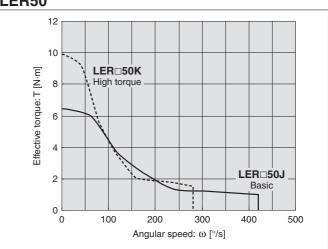
## **Effective Torque—Angular Speed**







#### LER30



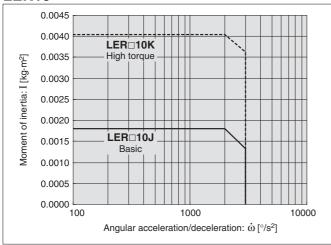

#### LER30



#### LER50

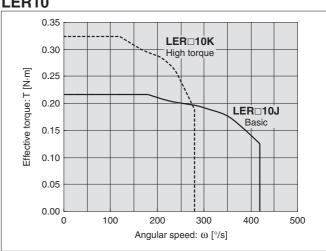


#### LER50

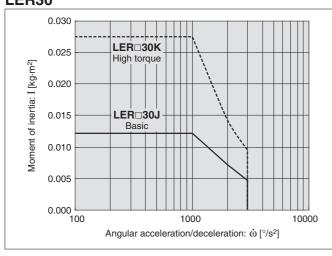



For the LECP6/LECP1/LECPMJ, refer to page 397.

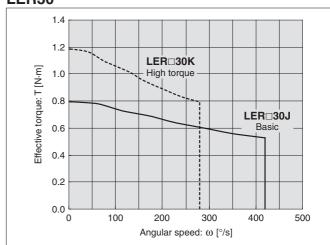
## For Step Motor (Servo/24 VDC) LECPA


### Moment of Inertia—Angular Acceleration/Deceleration

## LER<sub>10</sub>



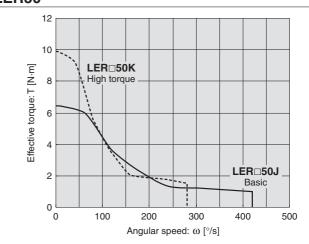

## **Effective Torque—Angular Speed**


#### LER<sub>10</sub>



#### LER30




#### LER30



#### LER50



#### LER50



핔

LEM

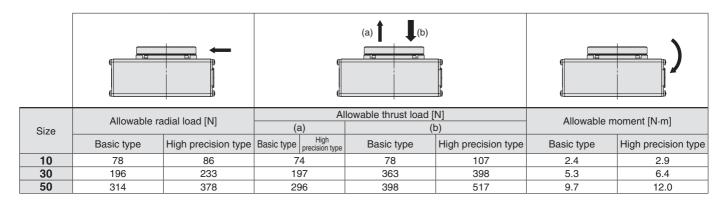
LEYG LEYG

LEPY LEPS LER

Ē

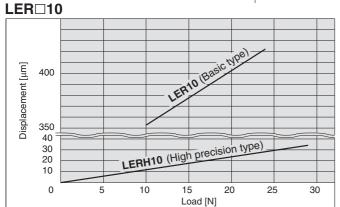
LEY-X5 11-LEFS

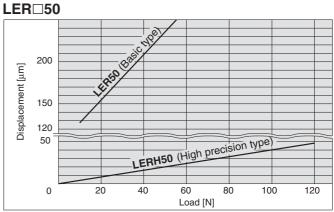
> 11-LEJS 25A-

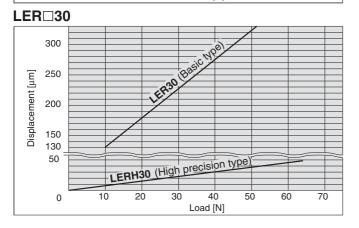

LEC LECSS-T LECS

LECYM

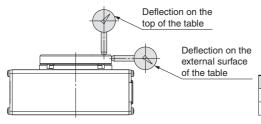

Motorless LAT3





#### Allowable Load




#### **Table Displacement (Reference Value)**










## Deflection Accuracy: Displacement at 180° Rotation (Guide)

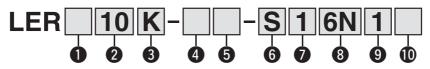


|                                                 |                  | [mm]                       |
|-------------------------------------------------|------------------|----------------------------|
| Measured part                                   | LER (Basic type) | LERH (High precision type) |
| Deflection on the top of the table              | 0.1              | 0.03                       |
| Deflection on the external surface of the table | 0.1              | 0.03                       |



LESH LI

LEPY


## **Electric Rotary Table**

Series LER LER10, 30, 50





#### **How to Order**



## Table accuracy

| Nil | Basic type          |
|-----|---------------------|
| Н   | High precision type |

| 2 Siz | е |
|-------|---|
| 10    |   |
| 30    |   |
| 50    |   |

#### Max. rotating torque [N·m]

| Symbol | Туре        | LER10 | LER30 | LER50 |
|--------|-------------|-------|-------|-------|
| K      | High torque | 0.32  | 1.2   | 10    |
| J      | Basic       | 0.22  | 0.8   | 6.6   |

#### 4 Rotation angle [°]

| Symbol | LER10                 | LER30 | LER50 |
|--------|-----------------------|-------|-------|
| Nil    | 310                   | 32    | 20    |
| 2      | External stopper: 180 |       |       |
| 3      | External stopper: 90  |       |       |

| <b>W</b> Mot | or cable entry                       |
|--------------|--------------------------------------|
|              | Basic type (entry on the right side) |
| Nil          |                                      |
| L            | Entry on the left side               |

|      | 71                          |     |
|------|-----------------------------|-----|
| Nil  | Without controller/driver   |     |
| 6N   | LECP6                       | NPN |
| 6P   | (Step data input type)      | PNP |
| 1N   | LECP1                       | NPN |
| 1P   | (Programless type)          | PNP |
| MJ   | LECPMJ*2                    |     |
| IVIJ | (CC-Link direct input type) | _   |
| AN   | LECPA*3                     | NPN |
| AP   | (Pulse input type)          | PNP |

8 Controller/Driver type\*1

- \*1 For details about controller/driver and compatible motor, refer to the compatible controller/driver below.
- \*2 Not applicable to CE.
- \*3 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R-□) on page 587 separately.

### 6 Actuator cable type\*

| Nil | Without cable                  |
|-----|--------------------------------|
| S   | Standard cable                 |
| R   | Robotic cable (Flexible cable) |

\* The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.

## 9 I/O cable length [m]\*1. Communication plug

| — ac came tengin [m] , c came a              |                                                        |  |  |  |  |  |
|----------------------------------------------|--------------------------------------------------------|--|--|--|--|--|
| Nil                                          | Without cable (Without communication plug connector)*3 |  |  |  |  |  |
| 1                                            | 1.5                                                    |  |  |  |  |  |
| 3                                            | 3* <sup>2</sup>                                        |  |  |  |  |  |
| 5                                            | 5* <sup>2</sup>                                        |  |  |  |  |  |
| S                                            | Straight type communication plug connector*3           |  |  |  |  |  |
| T T-branch type communication plug connector |                                                        |  |  |  |  |  |

- \*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 559 (For LECP6), page 573 (For LECP1) or page 587 (For LECPA) if I/O cable is required.
- \*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.
- \*3 For the LECPMJ, only "Nil", "S" and "T" are selectable since I/O cable is not included.

#### Actuator cable length [m]

| Nil | Without cable | 8 | 8*  |
|-----|---------------|---|-----|
| 1   | 1.5           | Α | 10* |
| 3   | 3             | В | 15* |
| 5   | 5             | С | 20* |

\* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 402.

#### (10) Controller/Driver mounting

|     | introlici/Diliver infoanting |  |  |
|-----|------------------------------|--|--|
| Nil | Screw mounting               |  |  |
| D   | DIN rail mounting*           |  |  |

\* DIN rail is not included. Order it separately.

#### **⚠** Caution

#### [CE-compliant products]

1) EMC compliance was tested by combining the electric actuator LER series and the controller LEC series.

The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.

② CC-Link direct input type (LECPMJ) is not CE-compliant.

#### [UL-compliant products]

When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

#### The actuator and controller/driver are sold as a package.

Confirm that the combination of the controller/driver and the actuator is correct.

## <Check the following before use.> ① Check the actuator label for model number. This matches the controller/driver. 2 Check Parallel I/O configuration matches (NPN or PNP) LER10K-2

\* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

#### Compatible Controller/Driver

| Туре                        | Step<br>data<br>input<br>type                     | CC-Link<br>direct<br>input<br>type | Programless type                                                                        | Pulse input<br>type        |
|-----------------------------|---------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------|----------------------------|
| Series                      | LECP6                                             | LECPMJ                             | LECP1                                                                                   | LECPA                      |
| Features                    | Value (Step data)<br>input/Standard<br>controller | CC-Link direct input               | Capable of setting up<br>operation (step data)<br>without using<br>a PC or teaching box | Operation by pulse signals |
| Compatible motor            |                                                   |                                    | motor<br>24 VDC)                                                                        |                            |
| Maximum number of step data | 64 p                                              | oints                              | 14 points                                                                               | _                          |
| Power supply voltage        |                                                   | 24 \                               | /DC                                                                                     |                            |
| Reference page              | Page 551                                          | Page 591                           | Page 567                                                                                | Page 581                   |

### **Specifications**

Step Motor (Servo/24 VDC)

|   | Model                   |                                                            | LER□10K                 | LER□10J                        | LER□30K     | LER□30J   | LER□50K   | LER□50J     |           |      |
|---|-------------------------|------------------------------------------------------------|-------------------------|--------------------------------|-------------|-----------|-----------|-------------|-----------|------|
|   |                         | Rotation angle [°]                                         |                         | 31                             | 310 320     |           |           |             |           |      |
|   |                         | Lead [°]                                                   |                         | 8                              | 12          | 8         | 12        | 7.5         | 12        |      |
|   |                         | Max. rotating torque [N⋅m]                                 |                         | 0.32                           | 0.22        | 1.2       | 0.8       | 10          | 6.6       |      |
|   |                         | Max. pushing torque [N·m] Note 1) 3)                       |                         | 0.16                           | 0.11        | 0.6       | 0.4       | 5           | 3.3       |      |
|   |                         | mux. moment or                                             |                         | P6/LECP1/LECPMJ                | 0.0040      | 0.0018    | 0.035     | 0.015       | 0.13      | 0.05 |
|   | ЭС                      | inertia [ko                                                | <b>j·m²]</b> Note 2) 3) | LECPA                          | 0.0040      | 0.0010    | 0.027     | 0.012       | 0.10      | 0.04 |
|   | Basic type              | Angular speed [°/sec] Note 2) 3)                           |                         | 20 to 280                      | 30 to 420   | 20 to 280 | 30 to 420 | 20 to 280   | 30 to 420 |      |
|   | ssic                    | Pushi                                                      | ng speed                | [°/sec]                        | 20          | 30        | 20        | 30          | 20        | 30   |
|   | B                       | Max. angul                                                 | ar acceleration/dece    | leration [°/sec²] Note 2)      |             |           | 30        | 00          |           |      |
|   | ns                      | Backi                                                      | ash [°]                 | Basic type                     | ±0          | 13        |           | ±C          | ).2       |      |
|   | atio                    | Duoki                                                      | uon [ ]                 | High precision type            | -10         | 7.0       |           | ±C          | ).1       |      |
|   | ific                    |                                                            | ioning                  | Basic type                     | ±0.         | 05        |           | ±0.         | .05       |      |
|   | эес                     | repea                                                      | tability [°]            | High<br>precision type         |             |           |           | ±0.         | .03       |      |
|   | rs                      | Lost me                                                    | otion [°] Note 4)       | Basic type                     | 0.3 o       | r less    |           | 0.3 o       |           |      |
|   | ato                     | precision type                                             |                         | precision type                 | 0.0 01 1000 |           |           | 0.2 or less |           |      |
|   | Actuator specifications | Impact/Vibration resistance [m/s <sup>2</sup> ] Note 5)    |                         | 150/30                         |             |           |           |             |           |      |
|   | A                       | Actuation type                                             |                         | Special worm gear + Belt drive |             |           |           |             |           |      |
|   |                         | Max. operating frequency [c.p.m]                           |                         | 60                             |             |           |           |             |           |      |
|   |                         | Operating temp. range [°C]                                 |                         | 5 to 40                        |             |           |           |             |           |      |
|   |                         | Operating humidity range [%RH]                             |                         | 90 or less (No condensation)   |             |           |           |             |           |      |
| • |                         | Weight [kg]                                                |                         | Basic type                     | 0.4         |           | 1.        |             |           | .2   |
| • |                         |                                                            |                         | precision type                 | 0.8         | 52        | 1.        | 2           | 2.        | .4   |
|   |                         | Rotation angle   -2/<br>arm (1 pc.)<br>-3/<br>arm (2 pcs.) |                         | 180                            |             |           |           |             |           |      |
|   | r type                  |                                                            |                         |                                | 90          |           |           |             |           |      |
|   | stopper type            | Repeatability at the end [°]/ with external stopper        |                         | ±0.01                          |             |           |           |             |           |      |
|   |                         | Externa                                                    | al stopper set          | tting range [°]                | ±2          |           |           |             |           |      |
|   | External                |                                                            | -2/external             | Basic type                     | 0.8         | 55        | 1.        | 2           | 2.        | .5   |
| 1 | Ex                      | Weight                                                     | arm (1 pc.)             | High precision type            | 0.0         | 61        | 1.        | 4           | 2.        | .7   |
|   |                         | [kg]                                                       | -3/external             | Basic type                     | 0.9         | 57        | 1.        | 2           | 2.        | .6   |
|   |                         |                                                            | arm (1 pc.)             | High<br>precision type         |             | 63        | 1.        | 4           | 2.        | .8   |
|   | ations                  | Motor                                                      | size                    |                                |             |           |           |             |           | 42   |
|   | atic                    | Motor type                                                 |                         | Step motor (Servo/24 VDC)      |             |           |           |             |           |      |

11

14

Incremental A/B phase (800 pulse/rotation)

24 VDC ±10%

22

12

42

#### Note 1) Pushing force accuracy is LER10: $\pm 30\%$ (F.S.), LER30: ±25% (F.S.), LER50: ±20% (F.S.).

Note 2) The angular acceleration, angular deceleration and angular speed may fluctuate due to variations in the

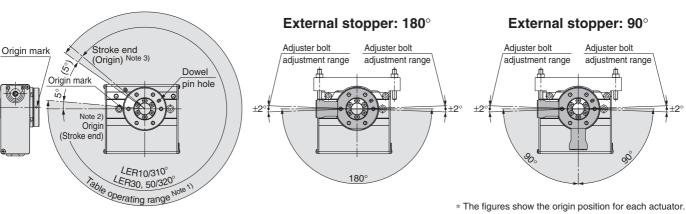
moment of inertia.

Refer to "Moment of Inertia—Angular Acceleration/ Deceleration, Effective Torque—Angular Speed" graphs on pages 397 and 398 for confirmation.

Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m, then it will decrease by up to 10% for each 5 m. (At 15 m: Reduced by up to 20%)

Note 4) A reference value for correcting an error in reciprocal operation.

Note 5) Impact resistance: No malfunction occurred when the slide table was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)


Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)

Note 6) The power consumption (including the controller) is for when the actuator is operating.

Note 7) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during operation.

Note 8) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.

## **Table Rotation Angle Range**



Encoder

Power supply [V]

Power consumption [W] Note 6

Standby power consumption when operating [W] Note 7)

Max. instantaneous power consumption [W] Note 8)

Note 1) Range within which the table can move when it returns to origin.

Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.

Note 2) Position after return to origin.

Note 3) [ ] for when the direction of return to origin has changed.



\* The figures show the origin position for each actuator.

11-LEJS

LECSS-T LECS

Motorless

402

LEZ

Щ

LEFS LEFB

LEPY LEPS

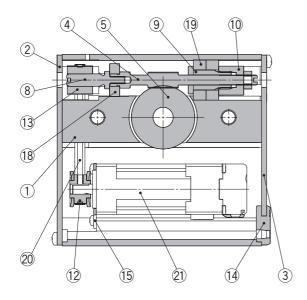
ᄪ

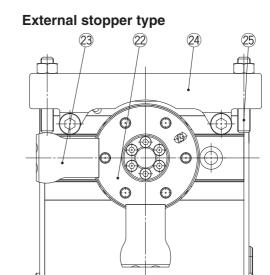
LEY-X5 11-LEFS

25A-

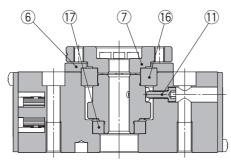
34

13

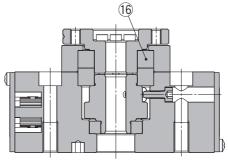

57


LECYM

LAT3




## Construction



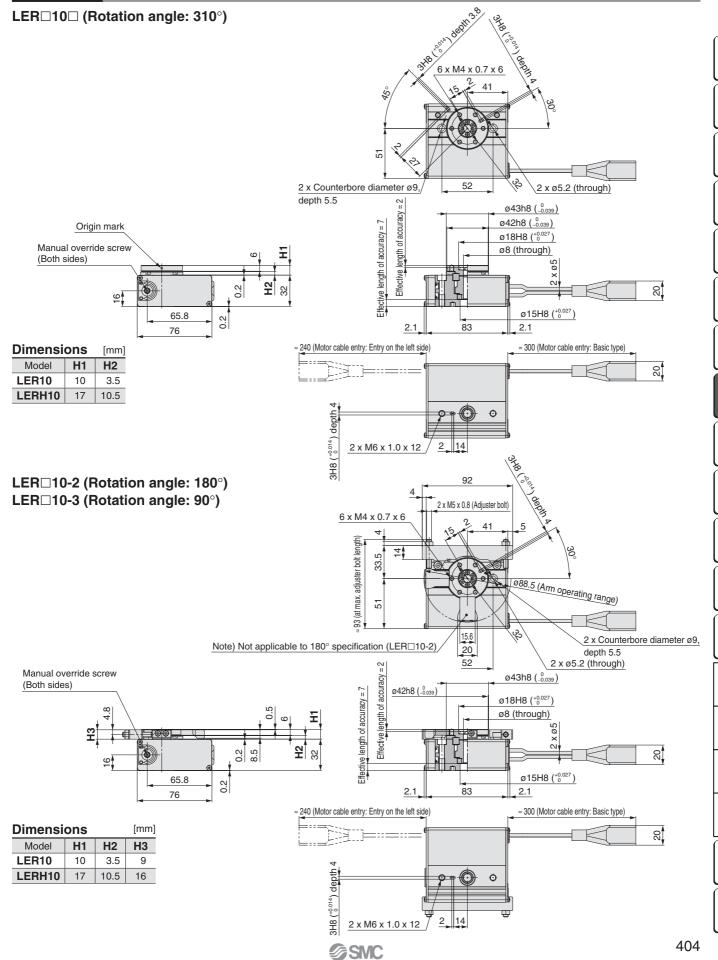



## Basic type








**Component Parts** 

| COI | omponent Parts            |                          |                 |                                  |  |  |  |
|-----|---------------------------|--------------------------|-----------------|----------------------------------|--|--|--|
| No. | Des                       | cription                 | Material        | Note                             |  |  |  |
| 1   | Body                      |                          | Aluminum alloy  | Anodized                         |  |  |  |
| 2   | Side plate                | A                        | Aluminum alloy  | Anodized                         |  |  |  |
| 3   | Side plate                | В                        | Aluminum alloy  | Anodized                         |  |  |  |
| 4   | Worm scre                 | w                        | Stainless steel | Heat treated + Specially treated |  |  |  |
| 5   | Worm whe                  | el                       | Stainless steel | Heat treated + Specially treated |  |  |  |
| 6   | Bearing co                | ver                      | Aluminum alloy  | Anodized                         |  |  |  |
| 7   | Table                     |                          | Aluminum alloy  |                                  |  |  |  |
| 8   | Joint                     |                          | Stainless steel |                                  |  |  |  |
| 9   | Bearing holder            |                          | Aluminum alloy  |                                  |  |  |  |
| 10  | Bearing stopper           |                          | Aluminum alloy  |                                  |  |  |  |
| 11  | Origin bolt               |                          | Carbon steel    |                                  |  |  |  |
| 12  | Pulley A                  |                          | Aluminum alloy  |                                  |  |  |  |
| 13  | Pulley B                  | Pulley B Aluminum alloy  |                 |                                  |  |  |  |
| 14  | Grommet                   | Grommet NBR              |                 |                                  |  |  |  |
| 15  | Motor plate               |                          | Carbon steel    |                                  |  |  |  |
| 16  | Basic type                | Deep groove ball bearing | _               |                                  |  |  |  |
|     | precision type            | Special ball<br>bearing  |                 |                                  |  |  |  |
| 17  | Deep groove ball bearing  |                          | _               |                                  |  |  |  |
| 18  | Deep groove ball bearing  |                          | _               |                                  |  |  |  |
| 19  | Deep groove ball bearing  |                          | <u> </u>        |                                  |  |  |  |
| 20  | Belt                      |                          | <u> </u>        |                                  |  |  |  |
| 21  | Step motor (Servo/24 VDC) |                          | _               |                                  |  |  |  |

**Component Parts** 

| No. | Description   | Material       | Note                                      |
|-----|---------------|----------------|-------------------------------------------|
| 22  | Table         | Aluminum alloy | Anodized                                  |
| 23  | Arm           | Carbon steel   | Heat treated + Electroless nickel treated |
| 24  | Holder        | Aluminum alloy | Anodized                                  |
| 25  | Adjuster bolt | Carbon steel   | Heat treated + Chromate treated           |





LEFS

LEJS

Ę.

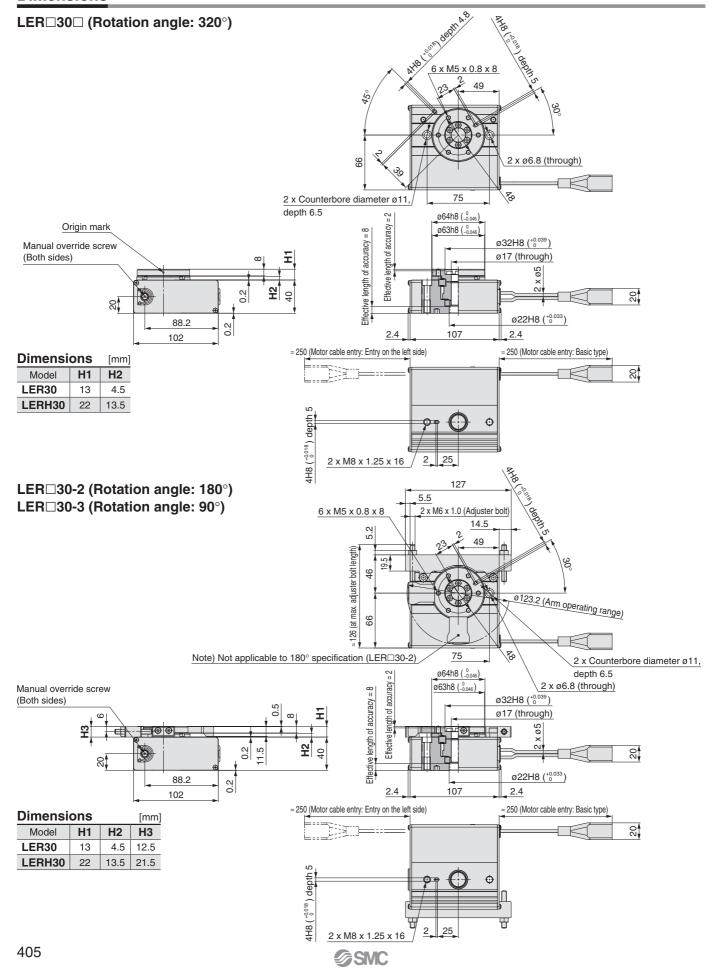
LEM

LEYG

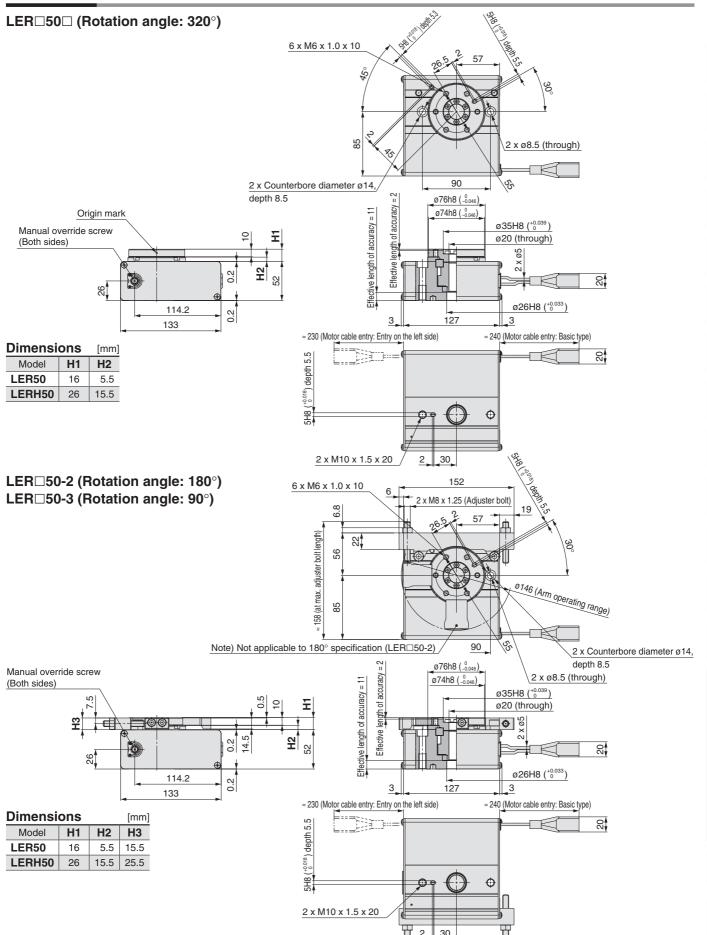
LESH | LESH

LEPY

LEY-X5 LEH


11-LEJS 11-LEFS

CS□ LEC□ 25A-


LECYM LECSS-T LECS

LAT3 Motorless









**SMC** 

406

LEFS

LEJS

LEM

핔

H LEYG

LEPY L

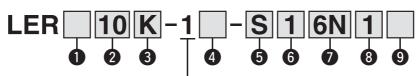
H

11-LEFS LEY-X5

25A- 11-LEJS

LECSS-T LECS

LAT3 Motorless LECYM


## **Continuous Rotation Specification**

## **Electric Rotary Table**

Series LER LER10, 30, 50



#### How to Order



## Table accuracy

| Nil | Basic type          |  |  |  |
|-----|---------------------|--|--|--|
| Н   | High precision type |  |  |  |

4 Motor cable entry

Entry on the left side

Controller type\*1

\*2 Not applicable to CE.

Nil

L

Nil

6N

6P

MJ

Basic type (entry on the right side)

Without controller

LECP6

(Step data input type)

LECPMJ\*2

(CC-Link direct input type)

\*1 For details about controller and compatible

The LECP1 and LECPA cannot be selected.

motor, refer to the compatible controller below.

#### 2 Size 10 30 50

## Rotation angle [°]

### Actuator cable type\*1 \*2

| Nil | Without cable                  |
|-----|--------------------------------|
| S   | Standard cable                 |
| R   | Robotic cable (Flexible cable) |

- \*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
- \*2 Actuator cable is equipped with a lock and sensor.

## I/O cable length [m]\*1, Communication plug

| 1411 | Without cable (Without confindingation plug confiector) |  |
|------|---------------------------------------------------------|--|
| 1    | 1.5                                                     |  |
| 3    | 3                                                       |  |
| 5    | 5                                                       |  |
| S    | Straight type communication plug connector*2            |  |
| Т    | T-branch type communication plug connector*2            |  |

- \*1 When "Without controller" is selected for controller types. I/O cable cannot be selected. Refer to page 559 if I/O cable for LECP6 is re-
- \*2 For the LECPMJ, only "Nil", "S" and "T" are selectable since I/O cable is not included.

#### 9 Controller mounting

| <u> </u> |                    |  |  |  |  |
|----------|--------------------|--|--|--|--|
| Nil      | Screw mounting     |  |  |  |  |
| D        | DIN rail mounting* |  |  |  |  |

\* DIN rail is not included. Order it separately.

## Max. rotating torque [N⋅m]

|  | _      |             | 3 1   |       | <u> </u> |
|--|--------|-------------|-------|-------|----------|
|  | Symbol | Type        | LER10 | LER30 | LER50    |
|  | K      | High torque | 0.32  | 1.2   | 10       |
|  | J      | Basic       | 0.22  | 0.8   | 6.6      |

#### 6 Actuator cable length [m]

| Nil | Without cable | 8 | 8*  |
|-----|---------------|---|-----|
| 1   | 1.5           | Α | 10* |
| 3   | 3             | В | 15* |
| 5   | 5             | С | 20* |

\* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 408.

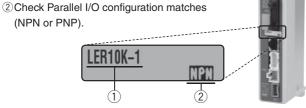
#### **\_**Caution

#### [CE-compliant products]

1) EMC compliance was tested by combining the electric actuator LER series and the controller

The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.

2 CC-Link direct input type (LECPMJ) is not CEcompliant.


#### [UL-compliant products]

When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

The actuator and controller are sold as a package. Confirm that the combination of the controller and the actuator is correct.

#### <Check the following before use.>

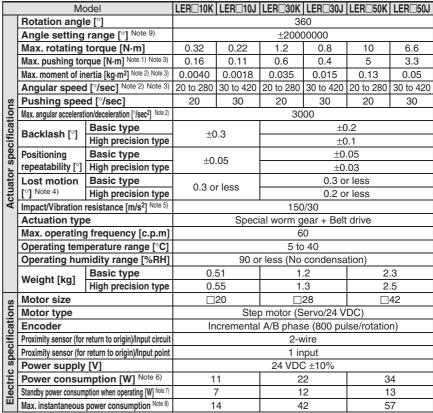
- ①Check the actuator label for model number. This matches the controller.
  - (NPN or PNP).



NPN

PNP

\* Refer to the operation manual for using the products. Please download it via our website. http://www.smcworld.com


#### **Compatible Controller**

| Туре                        | Step data input type                           | CC-Link direct input type |
|-----------------------------|------------------------------------------------|---------------------------|
| Series                      | LECP6 LECPMJ                                   |                           |
| Features                    | Value (Step data) input<br>Standard controller | CC-Link direct input      |
| Compatible motor            | Step motor<br>(Servo/24 VDC)                   |                           |
| Maximum number of step data | 64 points                                      |                           |
| Power supply voltage        | 24 VDC                                         |                           |
| Reference page              | Page 551                                       | Page 591                  |



### **Specifications**

#### Step Motor (Servo/24 VDC)



Note 1) Pushing force accuracy is LER10:  $\pm 30\%$  (F.S.), LER30:  $\pm 25\%$  (F.S.), LER50:  $\pm 20\%$  (F.S.).

Note 2) The angular acceleration, angular deceleration and angular speed may fluctuate due to variations in the moment of inertia. Refer to "Moment of Inertia—Angular Acceleration/ Deceleration, Effective Torque—Angular Speed" graphs on pages 397 and 398 for confirmation.

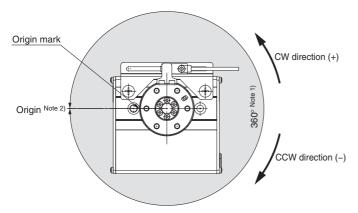
Note 3) The speed and force may change depending on the cable length, load and mounting conditions. Furthermore, if the cable length exceeds 5 m, then it will decrease by up to 10% for each 5 m. (At 15 m: Reduced by up to 20%)

Note 4) A reference value for correcting an error in reciprocal operation.

Note 5) Impact resistance: No malfunction occurred when the slide table was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)

Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz. Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)

Note 6) The power consumption (including the controller) is for when the actuator is operating. Note 7) The standby power consumption when operating (including the controller) is for when the


actuator is stopped in the set position during operation.

Note 8) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.

Note 9) The angle displayed on the monitor is automatically reset to  $0^\circ$  every 360° To set an angle (position), use the "Relative" movement mode.

If an angle of 360° or more is set using the "Absolute" movement mode, the correct operation cannot be performed.

## **Table Rotation Angle Range**



Note 1) Range within which the table can move.

Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.

Note 2) The sensor detection range is recognized as origin. When detecting the sensor, the table rotates in the reverse direction within the sensor detection range.



LEFS

EJS EJB

LEL

LEM

HEYO

S LES

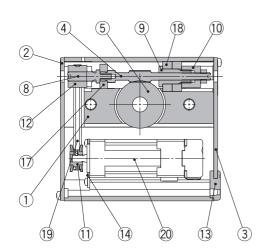
LEPY

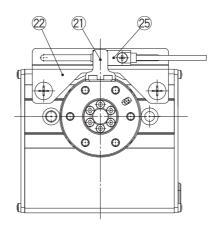
ت

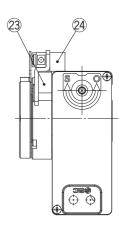
E LEH

11-LEFS LEY-X5

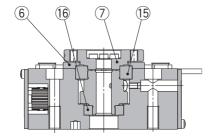
25A- 11-LEJS


LECYM LECSS-T LECS LEC

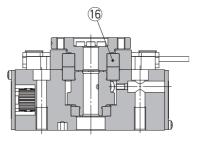

Motorless


I




## Construction





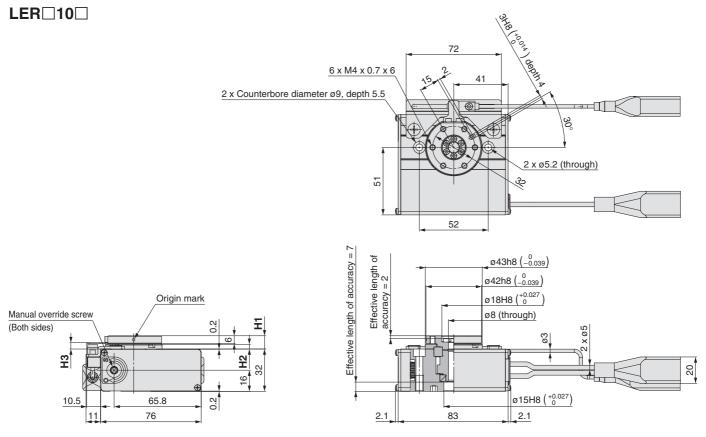



Basic type

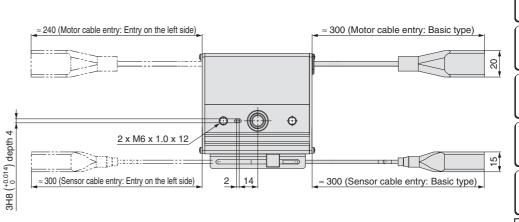


High precision type




**Component Parts** 

| CUI | iiponeiii ra               | ນ ເອ                     |                 |                                     |
|-----|----------------------------|--------------------------|-----------------|-------------------------------------|
| No. | Description                |                          | Material        | Note                                |
| 1   | Body                       |                          | Aluminum alloy  | Anodized                            |
| 2   | Side plate A               |                          | Aluminum alloy  | Anodized                            |
| 3   | Side plate B               |                          | Aluminum alloy  | Anodized                            |
| 4   | Worm screw                 |                          | Stainless steel | Heat treated +<br>Specially treated |
| 5   | Worm wheel                 |                          | Stainless steel | Heat treated +<br>Specially treated |
| 6   | Bearing cove               | r                        | Aluminum alloy  | Anodized                            |
| 7   | Table                      |                          | Aluminum alloy  |                                     |
| 8   | Joint                      |                          | Stainless steel |                                     |
| 9   | Bearing holder             |                          | Aluminum alloy  |                                     |
| 10  | Bearing stopper            |                          | Aluminum alloy  |                                     |
| 11  | Pulley A                   |                          | Aluminum alloy  |                                     |
| 12  | Pulley B                   |                          | Aluminum alloy  |                                     |
| 13  | Grommet                    |                          | NBR             |                                     |
| 14  | Motor plate                |                          | Carbon steel    |                                     |
| 15  | Basic type                 | Deep groove ball bearing |                 |                                     |
| -13 | High precision type        | Special ball bearing     |                 |                                     |
| 16  | Deep groove ball bearing   |                          | _               |                                     |
| 17  | 7 Deep groove ball bearing |                          | _               |                                     |
| 18  | Deep groove ball bearing   |                          | <u> </u>        |                                     |
| 19  | Belt                       |                          | _               |                                     |
| 20  | Step motor (S              | Servo/24 VDC)            | _               |                                     |
|     |                            |                          |                 |                                     |


**Component Parts (360° type)** 

| No. | Description               | Material        | Note                                            |
|-----|---------------------------|-----------------|-------------------------------------------------|
| 21  | Proximity dog             | Stainless steel |                                                 |
| 22  | Sensor holder             | Carbon steel    | Chromate treated                                |
| 23  | Sensor holder spacer      | Aluminum alloy  | Anodized (High precision type can be used only) |
| 24  | Square nut                | Aluminum alloy  |                                                 |
| 25  | Proximity sensor assembly | _               |                                                 |
|     |                           |                 |                                                 |





| <b>Dimensions</b> [mm] |    |      |      |
|------------------------|----|------|------|
| Model                  | H1 | H2   | H3   |
| LER10                  | 10 | 3.5  | 4.8  |
| LERH10                 | 17 | 10.5 | 11.8 |



**SMC** 

LEM LEL

LEFS LEFB

LEJS LEJB

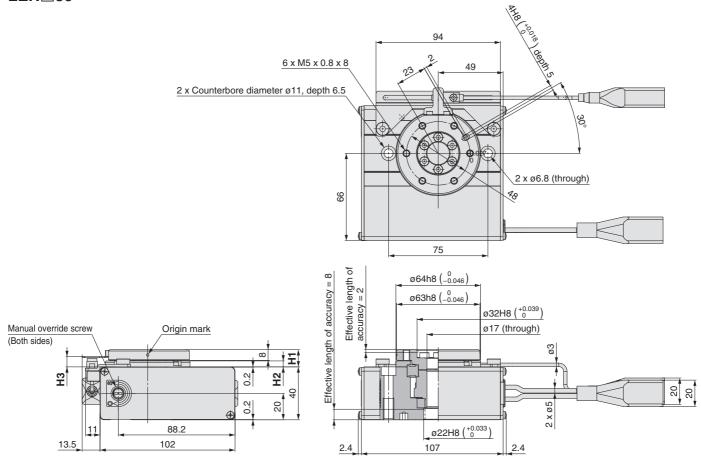
LEYG

S LESH

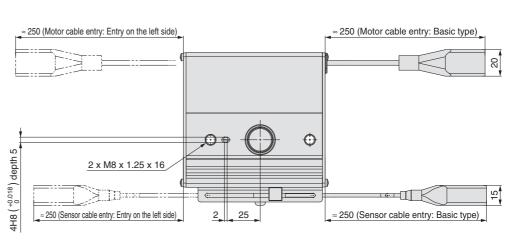
LER LEPY

LEH

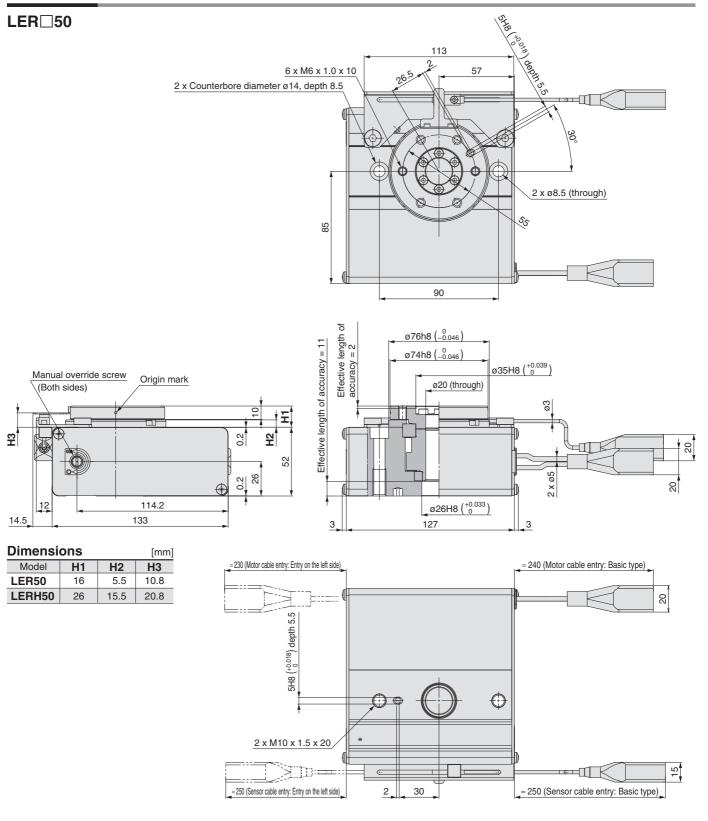
11-LEFS LEY-X5


25A- | 11-LEJS | 1

LECYM LECSS-T LECS□ LEC□


LAT3 Motorless




## LER□30



| <b>Dimensions</b> [mm] |    |      |      |  |
|------------------------|----|------|------|--|
| Model                  | H1 | H2   | Н3   |  |
| LER30                  | 13 | 4.5  | 7.8  |  |
| LERH30                 | 22 | 13.5 | 16.8 |  |







412

JS LEFS JB LEFB

LEJS LEJB

LEM

LESH LEYG

LEPY L

LER

11-LEFS LEY-X5 LEH

25A- 11-LEJS

LECYM LECSS-T LECS□ LEC□

LAT3 Motorless LEC



## Series LER Electric Rotary Table/ Specific Product Precautions 1

Be sure to read this before handling. Refer to page 906 for Safety Instructions. For Electric Actuator Precautions, refer to pages 907 to 912, or "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

**Design/Selection** 

## **⚠** Warning

- 1. If the operating conditions involve load fluctuations, ascending/descending movements, or changes in the frictional resistance, ensure that safety measures are in place to prevent injury to the operator or damage to the equipment.
  - Failure to provide such measures could accelerate the operation speed, which may be hazardous to humans, machinery, and other equipment.
- 2. Power failure may result in a decrease in the pushing force; ensure that safety measures are in place to prevent injury to the operator or damage to the equipment.

When the product is used for clamping, the clamping force could be decreased due to power failure, potentially creating a hazardous situation in which the workpiece is released.

## Caution

- 1. If the operating speed is set too fast and the moment of inertia is too large, the product could be damaged. Set appropriate product operating conditions in accordance with the model selection procedure.
- 2. If more precise repeatability of the rotation angle is required, use the product with an external stopper, with repeatability of ±0.01° (180° and 90° with adjustment of ±2°) or by directly stopping the workpiece using an external object utilizing the pushing operation.
- 3. When using the electric rotary table with an external stopper, or by directly stopping the load externally, be sure to set to [Pushing operation].

Also, ensure that the workpiece is not impacted externally during the positioning operation or in the range of positioning operation.

#### Mounting

## 

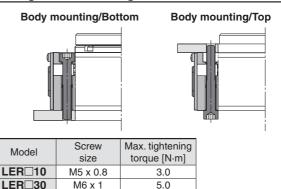
- 1. Do not drop or hit the electric rotary table to avoid scratching and denting the mounting surfaces.
  - Even slight deformation can cause the deterioration of accuracy and operation failure.
- 2. When mounting the load, tighten the mounting screws within the specified torque range.

Tightening the screws with a higher torque than recommended may cause malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position.

#### Mounting the workpiece to the electric rotary table

The load should be mounted with the torque specified in the following table by screwing the screw into the mounting female thread. If long screws are used, they can interfere with the body and cause a malfunction.

| Model  | Screw<br>size | Thread length [mm] | Max. tightening torque [N·m] |
|--------|---------------|--------------------|------------------------------|
| LER□10 | M4 x 0.7      | 6                  | 1.4                          |
| LER□30 | M5 x 0.8      | 8                  | 3.0                          |
| LEB□50 | M6 x 1        | 10                 | 5.0                          |


3. When mounting the electric rotary table, tighten the mounting screws within the specified torque range.

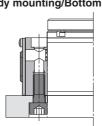
Tightening the screws with a higher torque than recommended may cause malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position.

#### Mounting

## **⚠** Warning

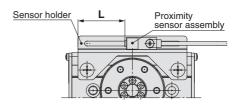
Through-hole mounting




#### **Body tapped mounting**

M8 x 1.25

LER□50


#### **Body mounting/Bottom**

12.0



| Model  | Screw<br>size | Max. tightening torque [N·m] | Max. screw-in depth [mm] |
|--------|---------------|------------------------------|--------------------------|
| LER□10 | M6 x 1        | 5.0                          | 12                       |
| LER□30 | M8 x 1.25     | 12.0                         | 16                       |
| LER□50 | M10 x 1.5     | 25.0                         | 20                       |

- 4. The mounting face has holes and slots for positioning. Use them for accurate positioning of the electric rotary table if required.
- 5. If it is necessary to operate the electric rotary table when it is not energized, use the manual override screws.
  - When it is necessary to operate the product by the manual override screws, check the position of the manual override screws of the product, and leave necessary space. Do not apply excessive torque to the manual override screws. This may lead to damage and malfunction.
- 6. The 360° type proximity sensor for return to origin can be changed ±30°. When changing the position of the proximity sensor for return to origin, tighten the screws with a tightening torque of 0.6±0.1 [N·m].



| Model    | L [mm] (Initial setting) Cable entry: Basic type/Entry on the left side |  |
|----------|-------------------------------------------------------------------------|--|
|          | (Between the sensor holder end face and proximity sensor end face)      |  |
| LER□10-1 | 31/31                                                                   |  |
| LER□30-1 | 42/42                                                                   |  |
| LER□50-1 | 51.5/51.5                                                               |  |





# Series LER Electric Rotary Table/ Specific Product Precautions 2

Be sure to read this before handling. Refer to page 906 for Safety Instructions. For Electric Actuator Precautions, refer to pages 907 to 912, or "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

#### Handling

## **⚠** Caution

Use a free moving connector (such as a coupling).

2. The moving force should be the initial value (100%).

If the moving force is set below the initial value, there may be variation in the cycle time, or an alarm may be generated.

#### 3. INP output signal

1) Positioning operation

When the product comes within the set range by step data [In position], the INP output signal will turn on. Initial value: Set to [0.50] or higher.

2) Pushing operation

When the effective force exceeds the [Trigger LV] value (including force during operation), the INP output signal will turn on.

The [Trigger LV] should be set between 40% and [Pushing force].

- a) To ensure that the clamping and external stop is achieved by [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
- b) When the [Pushing force] and [Trigger LV] are set less than the specified range, the INP output signal will turn on from the pushing start position.
- 4. When using the electric rotary table with an external stopper, or by directly stopping the load externally, be sure to set to [Pushing operation].

Also, ensure that the workpiece is not impacted externally during the positioning operation or in the range of positioning operation.

If the product is used in the positioning operation mode, there may be galling or other problems when the product/workpiece comes into contact with the external stopper or external object.

5. When the table is stopped by the pushing operation mode (stopping/clamping), set the product to a position of at least 1° away from the workpiece. (This position is referred to as the pushing start position.)

If the pushing start position (stopping or clamping) is set to the same position as the external stop position, the following alarms may be generated and operation may become unstable.

a. "Posn failed" alarm is generated.

It is not possible to reach the pushing start position within the target time.

b. "Pushing ALM" alarm is generated.

The product is pushed back from a pushing start position after starting to push.

c. "Deviation over flow" alarm is generated.

Displacement exceeding the specified value is generated at the pushing start position.

6. There is no backlash effect when the product is stopped externally by pushing operation.

For the return to origin, the origin position is set by the pushing operation.

#### Handling

## **⚠** Caution

7. For the specification with an external stopper, an angle adjustment bolt is provided as standard.

The rotation angle adjustment range is  $\pm 2^{\circ}$  from the angle rotation end.

If the angle adjustment range is exceeded, the rotation angle may change due to insufficient strength of the external stopper. One revolution of the adjustment bolt is approximately equal to  $1^{\circ}$  of rotation.

- 8. In case that gravity is added to the workpiece along the rotation direction when product is mounted vertically, the workpiece may fall down when "SVON" signal is OFF or EMG is not energizing.
- 9. When mounting the product, keep a 40 mm or longer diameter for bends in the motor cable.

#### Maintenance

## **⚠** Danger

 The high precision type bearing is assembled by pressing into position. It is not possible to disassemble it. LEFS LEFB

EJS EJB

LEL

LEM

LEYC

LESH

LEPS

**"** 

Ē

11-LEFS LEY-X5

11-LEJS 1

25A-

LECSS-T LECS□ LEC□

LECYM LE

3 Motor

LAT

