Electric Actuator $\mathrm{C} \in \mathrm{OH}_{\mathrm{oy}} \mathrm{V}_{\text {is }}$ Series LEL
 RoHS

Guide Rod Slider

Low－profile／Flat Height 48 mm

Profile reduced by side mounting of motor

Max．stroke： 1000 mm Transfer speed： 1000 mm／s

Compatible with sliding bearing and ball bushing bearing

Model	Size	Bearing	Stroke［mm］	Work load （Horizontal）［kg］	Speed ［mm／s］	Positioning repeatability ［mm］	Page
LEL25M	25	Sliding bearing	Up to 1000	3	Up to 500	± 0.08	－Page 143
LEL25L		Ball bushing bearing	Up to 1000	5	Up to 1000	± 0.08	

Step Motor（Servo／24 VDC）Controller
Step data
input type
Series LECP6
－64 points positioning
－Input using controller setting
kit or teaching box

－Programless type
Series LECP1
－ 14 points positioning
－Control panel setting

Simple construction. Guide type can be selected.
 Max. stroke: 1000 mm
 Transfer speed: $1000 \mathrm{~mm} / \mathrm{s}$

Guide type

- Sliding bearing

Work load: 3 kg (Horizontal)
Reduced noise (60 dB or less) ${ }^{\text {Note) }}$

- Ball bushing bearing

Work load: 5 kg (Horizontal)
Transfer speed: $1000 \mathrm{~mm} / \mathrm{s}$
Note) When the maximum speed is $500 \mathrm{~mm} / \mathrm{s}$
(Measured by SMC)

Auto switch mountable

 (Made to Order)For checking the limit and intermediate signal
Applicable to the D-M9 \square and D-M9 \square W (2-color indication)

* The auto switches should be ordered separately. Refer to pages 152 and 153 for details.

Electric Actuator/Guide Rod Slider Series LEL

	Model Selection	Page 143
	How to Order	Page 147
	Specifications	Page 149
	Construction	Page 150
	Dimensions	Page 151
	Auto Switch	Page 152
	Specific Product Precautions	Page 154

Step Motor (Servo/24 VDC) Controller

Step Data Input Type/Series LECP6 Page 551
Controller Setting Kit/LEC-W2 Page 560
Teaching Box/LEC-T1 Page 561
CC-Link Direct Input Type/Series LECPMJ Page 591
Controller Setting Kit/LEC-W2 Page 595
Teaching Box/LEC-T1 Page 596
Gateway Unit/Series LEC-G Page 563
Programless Controller/Series LECP1 Page 567

Electric Actuators

Guide Rod Slider

Series LEL

Selection Procedure

Selection Example

Operating

Step 1 Check the work load-speed. <Speed-Work load graph> (Page 146) Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LEL25LT-500 is temporarily selected based on the graph shown on the right side.

<Speed-Work load graph> (LEL25L/Step motor)

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.

Cycle time:

T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4$ [s]
-T1: Acceleration time and T3:
Deceleration time can be obtained by the following equation.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$
-T2: Constant speed time can be found from the following equation.
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{s}]$
-T4: Settling time varies depending on the conditions such as motor types, load and in position of the step data. Therefore, please calculate the settling time with reference to the following value.

T4 = 0.3 [s]

Step 3 Check the guide moment.

Based on the above calculation result, the LEL25LT-500 is selected.

Calculation example)
T1 to T4 can be calculated as follows.

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}], \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{500-0.5 \cdot 300 \cdot(0.1+0.1)}{300} \\
& =1.57[\mathrm{~s}] \\
\mathrm{T} 4 & =0.3[\mathrm{~s}]
\end{aligned}
$$

Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.1+1.57+0.1+0.3 \\
& =2.07[\mathrm{~s}]
\end{aligned}
$$

L : Stroke [mm]
...(Operating condition)
V : Speed [mm/s]
...(Operating condition)
a1: Acceleration [mm/s²]
...(Operating condition)
a2: Deceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
...(Operating condition)
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is
operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed
＊This graph shows the amount of allowable overhang（guide unit）when the center of gravity of the workpiece overhangs in one direction．When selecting the overhang，refer to＂Calculation of Guide Load Factor＂or the Electric Actuator Selection Software for confirmation，http：／／www．smcworld．com

Load overhanging direction

m ：Work load［kg］
$\mathrm{L}:$ Overhang to the work load center of gravity［ mm ］

Model

Wall mounting

Z

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEL
Size: 25
Mounting orientation: Horizontal/Bottom/Wall
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph with reference to the model, size and mounting orientation.
3. Based on the acceleration and work load, obtain the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.

$$
\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z
$$

5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ and $\alpha \mathbf{z}$ is 1 or less.

$$
\alpha x+\alpha y+\alpha z \leq 1
$$

When 1 is exceeded, please consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEL
Size: 25L
Stroke: 500
Mounting orientation: Horizontal
Acceleration [mm/s²]: 3000
Work load [kg]: 4
Work load center position [mm]: Xc=30, Yc=20,Zc=100
2. Select three graphs from the top of the right side on page 144.
3. $L x=120 \mathrm{~mm}, L y=65 \mathrm{~mm}, \mathrm{Lz}=\mathbf{3 9 0} \mathbf{~ m m}$
4. The load factor for each direction can be obtained as follows.
$\alpha x=30 / 120=0.25$
$\alpha y=20 / 65=0.31$
$\alpha z=100 / 390=0.26$
5. $\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha z=0.82 \leq 1$

Model Selection Series LEL
Step Motor (Servo/24 VDC)

Speed-Work Load Graph (Guide)

LEL25L

Table Displacement (Reference Value)

* Amount of displacement of the table when the load center of gravity is located at the table center in the middle of the stroke.

Load center of gravity located at the center of the table

Table Displacement (Reference Value)

* Amount of displacement when the load is offset by "L" from the center of the table.

Electric Actuator/Guide Rod Slider Belt Drive

25

* When [With lock] is selected, [With motor cover] cannot be selected.

Abstract

\triangle Caution [CE-compliant products] (1) EMC compliance was tested by combining the electric actuator LEL series and the controller LEC series. The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole. 2) CC-Link direct input type (LECPMJ) is not CE-compliant. [UL-compliant products] When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Actuator cable type*

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

* The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.

Applicable Stroke Table - Standard/ \bigcirc : Produced upon receipt of order

Model Stroke	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$	$\mathbf{5 0 0}$	$\mathbf{6 0 0}$	$\mathbf{7 0 0}$	800	$\mathbf{9 0 0}$	1000
LEL25	\bigcirc	\bigcirc	\ominus	\bullet	\bullet	\bullet	\bigcirc	\bigcirc	\bigcirc	\bigcirc

Please consult with SMC as all non-standard and non-made-to-orde strokes are produced as special orders.

The actuator and controller are provided as a set.
Confirm that the combination of the controller and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Electric Actuator／Guide Rod Slider Series LEL
Step Motor（Servo／24 VDC）

سٌ
－号

Actuator cable length［m］

Nil	Without cable	$\mathbf{8}$	8^{*}
$\mathbf{1}$	1.5	\mathbf{A}	10^{*}
$\mathbf{3}$	3	\mathbf{B}	15^{*}
$\mathbf{5}$	5	\mathbf{C}	20^{*}

＊Produced upon receipt of order（Robotic cable only） Refer to the specifications Note 2）on page 149.

8 Controller type＊

Nil	Without controller	
6N	LECP6	NPN
6P	（Step data input type）	PNP
1N	LECP1	NPN
1P	（Programless type）	PNP
MJ	LECPMJ	-
	（CC－Link direct input type）	-

＊For details about controller and compatible motor，refer to the compatible controller below．
11 Made to Order
Nil Standard product X5 With magnet／switch rail
（9）I／O cable length［ m$]^{* 1}$ ，Communication plug Nil Without cable（Without communication plug connector）＊2

Nil	1.5^{*}
$\mathbf{3}$	3^{*}
$\mathbf{5}$	5^{*}
S	Straight type communication plug connector＊2
T	T－branch type communication plug connector＊2

＊1 When＂Without controller＂is selected for controller types，I／O cable length cannot be selected．
＊2 For the LECPMJ，only＂Nil＂，＂ S ＂and＂ T ＂are selectable since I／O cable is not included．

Compatible Controller

Type	Step data input type	CC－Link direct input type	Programless type
Series	LECP6	LECPMJ	LECP1
Features	Value（Step data）input Standard controller	CC－Link direct input	Capable of setting up operation（step data） without using a PC or teaching box
Compatible motor	Step motor（Servo／24 VDC）		
Maximum number of step data	64 points		14 points
Power supply voltage	24 VDC		
Reference page	Page 551	Page 591	Page 567

号寽
플

㐫

Series LEL

Step Motor (Servo/24 VDC)

Specifications

Step Motor (Servo/24 VDC)

Note 1) Strokes shown in () are produced upon receipt of order. Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.
Note 2) Speed changes according to the work load. Check "Speed-Work Load Graph (Guide)" on page 146. The work load changes according to the stroke and work load mounting condition.
Check "Dynamic Allowable Moment" graph on page 144. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to 10% for each 5 m .
Note 3) A reference value for correcting an error in reciprocal operation.
Note 4) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both the stroke direction and a perpendicular direction to the stroke. (The test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz , when the actuator was tested in both stroke direction and a perpendicular direction to the stroke. (The test was performed with the actuator in the initial state.)
Note 5) Allowable external resistance is the allowable resistance when flexible moving tube or similar is used
Note 6) The power consumption (including the controller) is for when the actuator is operating.
Note 7) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during operation.
Note 8) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 9) With lock only
Note 10) For an actuator with lock, add the power consumption for the lock.

Actuator Product Weight

Construction
（11）（8）

A－A（LEL25LT－\square ）

Component Parts

No．	Description	Material	Note
1	Table	Aluminum alloy	Anodized
2	Motor end plate	Aluminum alloy	Anodized
3	End plate	Aluminum alloy	Anodized
4	Motor mount	Aluminum die－cast	Painting
5	Pulley holder	Aluminum alloy	
6	Belt cover	Aluminum alloy	Anodized
7	Guide rod	Carbon steel	Hard chrome plating
8	Belt holder	Carbon steel	Chromating
9	Pulley shaft	Stainless steel	
10	Spacer	Aluminum alloy	
11	Belt stopper	Aluminum alloy	
12	Tension plate	Aluminum alloy	Anodized
13	Motor cover	Synthetic resin	＂With motor cover＂only
14	Grommet	Aluminum alloy	＂With motor cover＂only
15	Motor pulley	Aluminum alloy	Anodized
16	End pulley	-	Anodized
17	Motor	-	
18	Belt	-	
19	Bushing	-	Chromating
	Ball bushing bearing	-	
20	Bearing	Carbon steel	
21	Bearing		
22	Hexagon bolt		

Motor option：
With lock

A－A（LEL25MT－\square ）

Motor option： With motor cover

Series LEL

Step Motor (Servo/24 VDC)

Dimensions
LEL25 ${ }_{\text {L }}{ }^{\mathrm{M}}$ T

Note 1) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.

Model	L	L*	A	B	C	D	E
LEL25MT-100 \square - $\square \square \square \square \square$	272.5	280	210	106	63	3	64
LEL25MT-200 \square - $\square \square \square \square \square$	372.5	380	310	206			
LEL25MT-300 \square - $\square \square \square \square \square$	472.5	480	410	306			
LEL25MT-400 \square - $\square \square \square \square \square$	572.5	580	510	406			
LEL25MT-500 \square - $\square \square \square \square \square$	672.5	680	610	506			
LEL25MT-600 \square - $\square \square \square \square \square$	772.5	780	710	606			
LEL25MT-700 \square - $\square \square \square \square \square$	872.5	880	810	706			
LEL25MT-800 \square - $\square \square \square \square \square$	972.5	980	910	806			
LEL25MT-900 \square - $\square \square \square \square \square$	1072.5	1080	1010	906			
LEL25MT-1000 \square - $\square \square \square \square \square$	1172.5	1180	1110	1006			
LEL25LT-100 \square - $\square \square \square \square \square$	292.5	300	230	108	73	4	82
LEL25LT-200 \square - $\square \square \square \square \square$	392.5	400	330	208			
LEL25LT-300 \square - $\square \square \square \square \square$	492.5	500	430	308			
LEL25LT-400 \square - $\square \square \square \square \square$	592.5	600	530	408			
LEL25LT-500 \square - $\square \square \square \square \square$	692.5	700	630	508			
LEL25LT-600 \square - $\square \square \square \square \square$	792.5	800	730	608			
LEL25LT-700 \square - $\square \square \square \square \square$	892.5	900	830	708			
LEL25LT-800 \square - $\square \square \square \square \square$	992.5	1000	930	808			
LEL25LT-900 \square - $\square \square \square \square \square$	1092.5	1100	1030	908			
LEL25LT-1000 \square - $\square \square \square \square \square$	1192.5	1200	1130	1008			

* With motor cover

Solid State Auto Switch Direct Mounting Style D－M9N（V）／D－M9P（V）／D－M9B（V）C €

Grommet

－2－wire load current is reduced （ 2.5 to 40 mA ）．
－Flexibility is 1.5 times greater than the former model（SMC comparison）．
－Using flexible cable as standard．

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body．The auto switch may be damaged if a screw other than the one supplied is used．

Auto Switch Specifications

Refer to SMC website for the details about products conforming to the international standards．

PLC：Programmable Logic Controller						
D－M9 \square ，D－M9 \square V（With indicator light）						
Auto switch model	D－M9N	D－M9NV	D－M9P	D－M9PV	D－M9B	D－M9BV
Electrical entry	In－line	Perpendicular	In－line	Perpendicular	In－line	Perpendicular
Wiring type	3－wire				2－wire	
Output type	NPN		PNP		－	
Applicable load	IC circuit，Relay，PLC				24 VDC relay，PLC	
Power supply voltage	5，12， 24 VDC （ 4.5 to 28 V ）				－	
Current consumption	10 mA or less				－	
Load voltage	28 VDC or less		－		24 VDC（10 to 28 VDC）	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA （ 2 V or less at 40 mA ）				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED lights up when turned ON．					
Standards	CE marking，RoHS					

Oilproof Heavy－duty Lead Wire Specifications

Auto switch model		D－M9N \square	D－M9P \square	D－M9B \square
Sheath	Outside diameter［mm］	2.7×3.2（ellipse）		
Insulator	Number of cores	3 cores	／Black）	2 cores（Brown／Blue）
	Outside diameter［mm］	$\varnothing 0.9$		
Conductor	Effective area［ mm^{2} ］	0.15		
	Strand diameter［mm］	$\varnothing 0.05$		
Minimum bending radius［mm］（Reference value）		20		

Note 1）Refer to the Best Pneumatics No． 2 for solid state auto switch common specifications． Note 2）Refer to the Best Pneumatics No． 2 for lead wire lengths．

Weight
［g］

Auto switch model		D－M9N（V）	D－M9P（V）	D－M9B（V）
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

\section*{| 吴 |
| :--- |
| 音 |}

Dimensions

D－M9 \square

D－M9 \square V

2-Color Indication Solid State Auto Switch Direct Mounting Style

 D-M9NW(V)/D-MMPW(V)/D-M9BW(V) C ϵRefer to SMC website for the details about products conforming to the
Auto Switch Specifications international standards.

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the former model (SMC comparison).
- Using flexible cable as standard.
- The optimum operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

PLC: Programmable Logic Controller						
D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less			24 VDC (10	to $28 \mathrm{VDC)}$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range \qquad Red LED lights up. Optimum operating range \qquad Green LED lights up.					
Standards	CE marking, RoHS					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW \square	D-M9PW \square	D-M9BW \square
Sheath	Outside diameter [mm]	2.7×3.2 (ellipse)		
Insulator	Number of cores	3 cores (Bros	e/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	$\varnothing 0.9$		
Conductor	Effective area [mm²]	0.15		
	Strand diameter [mm]	$\varnothing 0.05$		
Minimum bending radius [mm] (Reference value)		20		

Note 1) Refer to the Best Pneumatics No. 2 for solid state auto switch common specifications. Note 2) Refer to the Best Pneumatics No. 2 for lead wire lengths.

Weight

Auto switch model			D-M9NW(V)	D-M9PW(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

Dimensions
D-M9 $\square \mathbf{W}$

Series LEL

Electric Actuator／Guide Rod Slider Specific Product Precautions 1

\triangle
Be sure to read this before handling．Refer to page 906 for Safety Instructions．For Electric Actuator Precautions，refer to pages 907 to 912，or＂Handling Precautions for SMC Products＂and the Operation Manual on SMC website，http：／／www．smcworld．com

Design

\triangle Caution

1．Do not apply a load in excess of the specification limits．
Select a suitable actuator by work load and allowable moment． If the product is used outside of the specification limits，the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide，degrading accuracy and shortening the life of the product．
2．Do not use the product in applications where excessive external force or impact force is applied to it．
This can cause failure．
3．Because of the guide mechanism type，vibration that comes from an external source may be introduced into the workpiece during operation．Do not use this product in a location where vibration is not allowed．

Handling

\triangle Caution

1．Set［In position］in the step data to at least 1.
Otherwise，completion signal of in position may not be output．
2．INP output signal
1）Positioning operation
When the product comes within the set range by step data ［In position］，the INP output signal will turn on．
Initial value：Set to［1］or higher．

Handling

© Caution

3．Never hit at the stroke end except during return to origin．
When incorrect instructions are inputted，such as using the product outside of the specification limits or operation outside of actual stroke through changes in the controller／driver setting and／or origin position，the table may collide against the stroke end of the actuator．Check these points before use．
If the table collides against the stroke end of the actuator，the guide，belt or internal stopper can be broken．This may lead to abnormal operation．

4．The moving force should be the initial value（100\％）．
If the moving force is set below the initial value，it may cause an alarm．

5．The actual speed of this actuator is affected by the work load．
When selecting a product，check the catalog for the instructions regarding selection．
6．Do not apply a load，impact or resistance in addition to the transferred load during return to origin．
Additional force will cause the displacement of the origin position since it is based on detected motor torque．
7．Do not dent，scratch or cause other damage to the body and table mounting surfaces．
This may cause unevenness in the mounting surface，play in the guide or an increase in the sliding resistance．

8．Do not apply strong impact or an excessive moment while mounting a workpiece．
If an external force over the allowable moment is applied，it may cause play in the guide or an increase in the sliding resistance．

9．Keep the flatness of the mounting surface 0.2 mm or less．
Unevenness of a workpiece or base mounted on the body of the product may cause play in the guide and an increase in the sliding resistance．
10．When mounting the product，keep a 40 mm or longer diameter for bends in the cable．
11．Do not hit the table with the workpiece in the positioning operation and positioning range．
12．Hold by the end plates when moving the body．Do not hold the belt cover．

سٌ

Series LEL

Electric Actuator/Guide Rod Slider Specific Product Precautions 2

Be sure to read this before handling. Refer to page 906 for Safety Instructions. For Electric Actuator Precautions, refer to pages 907 to 912, or "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

Handling

\triangle Caution

13. When mounting the product, use screws with adequate length and tighten them with adequate torque.
Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

Body fixed

Model	Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\varnothing \mathbf{A}$ $[\mathrm{mm}]$	\mathbf{L} $[\mathrm{mm}]$
LEL25	M6	5.2	6.6	35.5

Workpiece fixed

To prevent the workpiece retaining screws from touching the body, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they can touch the body and cause a malfunction.
14. Do not operate by fixing the table and moving the actuator body.
15. The belt drive actuator cannot be used vertically for applications.
16. Check the specifications for the minimum speed of each actuator.
Otherwise, unexpected malfunctions, such as knocking, may occur.
17. In the case of the belt drive actuator, vibration may occur during operation at speeds within the actuator specifications, this could be caused by the operating conditions. Change the speed setting to a speed that does not cause vibration.

Maintenance			
\triangle Warning Maintenance frequency Perform maintenance according to the table below.			
Frequency	Appearance check	Internal check	Belt check
Inspection before daily operation	\bigcirc	-	-
Inspection every 6 months/ $1000 \mathrm{~km} /$ 5 million cycles*	\bigcirc	\bigcirc	\bigcirc

* Select whichever comes first.
- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts.
2. Loose or mechanical play in fixed parts or fixing screws.

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky.
f. Crack on the back of the belt

