Electric Slide Tables C $\in{ }_{\text {ory }}^{\text {in }}$ Series LES/LESH
 RoHS

Step Motor (Servo/24 VDC) Servo Motor (24 VDC)

- Reduced cycle time

\bullet Positioning repeatability: $\pm 0.05 \mathrm{~mm}$
\bullet Max. pushing force: 180 N Max. acceleration/deceleration: $5000 \mathrm{~mm} / \mathrm{s}^{2}$ Max. speed: 400 mm/s

Comparee with the LESH, Workpiece mounting surface height: Reduced by up to 12%

Basic type/R type
Nompact type New LES16D

Symmetrical type/L type

Electric Slide Tables

Compact Type Series LES

Increased by up to

| Inc\|c|c|c| |
| :--- |
| * By reducing weight of the moving parts |
| * Compared with the LESH16 |

\section*{Light weight
 Reduced by up to 29\%
 | Model | Weight [kg] |
| :---: | :---: |
| LES16D-100 | 1.20 |
| LESH16D-100 | 1.70 |
 Reduction amount
 Reduced by 0.50 kg}

Max. pushing force: 180 N

- Positioning repeatability: $\pm 0.05 \mathrm{~mm}$
- Possible to reduce cycle time Max. acceleration/deceleration: $5000 \mathrm{~mm} / \mathrm{s}^{2}$ Max. speed: $\mathbf{4 0 0 ~ m m / s ~}$
- 2 types of motors selectable: Step motor (Servo/24 VDC), Servo motor (24 VDC)

Series LES/LESH

High Rigidity Type Series LESH

High rigidity Deflection: $\mathbf{0 . 0 1 6 ~ m m * * L E S H 1 6 . 5 0 ~ L o a d : ~} 25 \mathrm{~N}$
Integration of the guide rail and the table Uses a circulating linear guide.

Integration of the guide rail and the table
OCompact, Space-saving
For LESH8 R/L, 50 mm stroke

OReduced by 61% in volume*

* Compared with the LESH16-50/LXSH-50
* For R/L type

Motor integrated
into the body Builtin motor

2 types of motors selectable

- Step motor (Servo/24 VDC) Ideal for transfer of high load at a low speed and pushing operation
- Servo motor (24 VDC)

Stable at high speed and silent operation

Speed
peration

$$
x_{2}
$$

Application Examples

Positioning of pallets on a conveyer

Symmetrical Type/L Type

The locations of the table and cable are opposite those of the basic type (R type), expanding design applications.

In-line Motor Type/D Type

Width dimension shortened by up to 45\%

A Dimension

A Dimension		
Size	D type	R/L type
$\mathbf{8}$	$\mathbf{3 2}$	58.5
$\mathbf{1 6}$	45	72.5
$\mathbf{2 5}$	$\mathbf{6 1}$	106

How to Mount

Through-hole mounting
(R/L/D type)

Side holder mounting (D type)

Body tapped mounting
(R/L/D type)

Step Motor (Servo/24 VDC) Servo Motor (24 VDC)

Electric Slide Table/Compact Type Series LES

Model Selection

Page 305

How to Order .. Page 315
Specifications .. Page 317
Construction ... Page 319
Dimensions .. Page 321

Step Motor (Servo/24 VDC) Servo Motor (24 VDC)

Electric Slide Table/High Rigidity Type Series LESH

Model Selection Page 331
How to Order Page 341
Specifications Page 343
Construction Page 345
Dimensions Page 347
Specific Product Precautions Page 357
Step Motor (Servo/24 VDC)/Servo Motor (24 VDC) Controller
Step Data Input Type/Series LECP6/LECA6 Page 551
Controller Setting Kit/LEC-W2 Page 560
Teaching Box/LEC-T1 Page 561
CC-Link Direct Input Type/Series LECPMJ Page 591
Controller Setting Kit/LEC-W2 Page 595
Teaching Box/LEC-T1 Page 596
Gateway Unit/Series LEC-G Page 563
Programless Controller/Series LECP1 Page 567
Step Motor Driver/Series LECPA Page 581
Controller Setting Kit/LEC-W2 Page 588
Teaching Box/LEC-T1 Page 589

Electric Actuators

Slide Tables

Compact Type Series LES

High Rigidity Type Series LESH

Step Motor（Servo／24 VDC）
Servo Motor（24 VDC）

Selection Procedure For the high rigidity type LESH series, refer to page 331

Selection Example

Check the work load-speed. <Speed-Work load graph> (Page 306)
Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LES16 $\square \mathbf{J}-50$ is temporarily selected based on the graph shown on the right side.

Step 2 Check the cycle time.

It is possible to obtain an approximate cycle time by using method 1 , but if a more detailed cycle time is required, use method 2.

Method 1: Check the cycle time graph. (Page 307)

Method 2: Calculation <Speed-Work load graph> (Page 306)
Calculate the cycle time using the following calculation method.
Cycle time:
T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

- T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]$
- T2: Constant speed time can be found from the following equation.

- T4: Settling time varies depending on the conditions such as motor types, load and in position of the step data. Therefore, calculate the settling time with reference to the following value.
$\mathrm{T} 4=0.15[\mathrm{~s}]$

Check the allowable moment. <Static allowable moment> (Page 307) <Dynamic allowable moment> (Pages 308, 309 Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Operating conditions

\bullet Workpiece mass: 1 [kg] • Workpiece mounting

- Speed: 220 [mm/s]
- Mounting orientation: Vertical
- Stroke: 50 [mm]
- Acceleration/Deceleration $5000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$
- Cycle time: 0.5 seconds

LES16 $\square /$ Step Motor Vertical

<Speed-Work load graph>

LES16 $\square /$ Step Motor

<Cycle time>
LES16/Pitching

[^0]
Speed-Work Load Graph (Guide)

Step Motor (Servo/24 VDC)

* The following graph shows the values when moving force is 100%.

LES8 \square

Horizontal

Vertical

LES16 \square

LES25 \square

Servo Motor (24 VDC)

* The following graph shows the values when moving force is 250%.

LES8 \square A
Horizontal

Vertical

LES16 \square A

Horizontal

Vertical

LES25 ${ }^{\text {R }}$ A

Series LES

Cycle Time (Guide)

Operating Conditions

Acceleration/Deceleration: $5000 \mathrm{~mm} / \mathrm{s}^{2}$
In position: 0.5 mm

Static Allowable Moment

Model		LES8	LES16	LES25
Pitching	$[\mathrm{N} \cdot \mathrm{m}]$	2	4.8	14.1
Yawing	$[\mathrm{N} \cdot \mathrm{m}]$	2	4.8	14.1
Rolling	$[\mathrm{N} \cdot \mathrm{m}]$	0.8	1.8	4.8

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to "Calculation of Guide Load Factor" or the Electric Actuator Selection Software for confirmation, http://www.smcworld.com

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to "Calculation of Guide Load Factor" or the Electric Actuator Selection Software for confirmation, http://www.smcworld.com

Acceleration/Deceleration - $5000 \mathrm{~mm} / \mathrm{s}^{2}$								
Load overhanging direction m : Work load [kg] Me: Dynamic allowable moment [$\mathrm{N} \cdot \mathrm{m}$] L : Overhang to the work load center of gravity [mm]			Model					
			LES8		LES16		LES25	

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LES
Size: 8/16/25
Mounting orientation: Horizontal/Bottom/Wall/Vertical

Acceleration [mm/s²]: a
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph with reference to the model, size and mounting orientation.
3. Based on the acceleration and work load, obtain the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.

$$
\alpha x=X c / L x, \alpha y=Y c / L y, \alpha z=Z c / L z
$$

5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ and $\alpha \mathbf{z}$ is 1 or less.
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, please consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LES
Size: 8
Mounting orientation: Horizontal
Acceleration [mm/s²]: 5000
Work load [kg]: 0.6
Work load center position [mm]: $\mathbf{X c}=\mathbf{5 0}, \mathbf{Y c}=\mathbf{3 0}, \mathbf{Z c}=\mathbf{6 0}$
2. Select three graphs from the top of the left side first row on page 308.
$\alpha x=50 / 220=0.23$
$\alpha y=30 / 135=0.22$
$\alpha z=60 / 250=0.24$
5. $\alpha \mathbf{x}+\alpha y+\alpha z=0.69 \leq 1$

Mounting orientation

3. $L x=\mathbf{2 2 0} \mathbf{m m}, L y=135 \mathrm{~mm}, \mathrm{Lz}=\mathbf{2 5 0} \mathbf{~ m m}$
4. The load factor for each direction can be obtained as follows.

Selection Procedure

Selection Example

Operating conditions
-Pushing force: 90 [N]
-Workpiece mass: 1 [kg]

- Speed: 100 [mm/s]
-Stroke: 100 [mm]
- Mounting orientation: Vertical upward
- Pushing time + Operation (A): 1.5 seconds
- All cycle time (B): 6 seconds

Step 1

Check the required force.
Calculate the approximate required force for pushing operation. Selection example) •Pushing force: $90[\mathrm{~N}]$
-Workpiece mass: 1 [kg]
Therefore, the approximate required force can be obtained as $90+10=100[\mathrm{~N}]$.
Select the target model based on the approximate required force with reference to the specifications (Pages 317 and 318). Selection example) Based on the specifications,

- Approximate required force: 100 [N]
- Speed: 100 [mm/s]

Therefore, the LES25 \square is temporarily selected.
Then, calculate the required force for pushing operation.
If the mounting position is vertical upward, add the actuator table weight.
Selection example) Based on the <Table weight>,
-LES25 \square table weight: 0.5 [kg]
Therefore, the required force can be obtained as $100+5=105[\mathrm{~N}]$.

Step 2

Check the set value of pushing force.
<Set value of pushing force-Force graph> (Page 312)
Select the target model based on the required force with reference to the <Set value of pushing force-Force graph>, and confirm the set value of pushing force.
Selection example) Based on the graph shown on the right side,

- Required force: 105 [N]

Therefore, the LES25 $\square \mathbf{K}$ is temporarily selected.
This set value of pushing force is 40 [\%].

Step 3

Check the duty ratio.

Confirm the allowable duty ratio based on the set value of pushing force with reference to the <Allowable duty ratio>.
Selection example) Based on the <Allowable duty ratio>,

- Set value of pushing force: 40 [\%]

Therefore, the allowable duty ratio can be obtained as 30 [\%].
Calculate the duty ratio for operating conditions, and confirm it does not exceed the allowable duty ratio.
Selection example) •Pushing time + Operation (A): 1.5 seconds - All cycle time (B): 6 seconds

Therefore, the duty ratio can be obtained as $1.5 / 6 \times 100=25[\%]$, and this is the allowable range.

Based on the above calculation result, the LES25 $\square \mathrm{K}-100$ is selected.
For allowable moment, the selection procedure is the same as the positioning control.

Table Weight

Model	Stroke $[\mathrm{mm}]$						
	30	50	75	100	125	150	
LES8	0.06	0.08	0.10	-	-	-	
LES16	0.10	0.13	0.18	0.20	-	-	
LES25	0.25	0.30	0.36	0.50	0.55	0.59	

* If the mounting position is vertical upward, add the table weight.

<Set value of pushing force-Force graph>

Allowable Duty Ratio
Step Motor (Servo/24 VDC)

Set value of pushing force (\%)	Duty ratio (\%)	Continuous pushing time (minute)
30	-	-
50 or less	30 or less	5 or less
70 or less	20 or less	3 or less

Servo Motor (24 VDC)

Set value of pushing force (\%)	Duty ratio (\%)	Continuous pushing time (minute)
50	-	-
75 or less	30 or less	5 or less
100 or less	20 or less	3 or less

* The pushing force of the LES8 \square A is up to 75%.

Set Value of Pushing Force－Force Gragh

Step Motor（Servo／24 VDC）

LES8 \square

LES16 \square

LES25 \square

Servo Motor（24 VDC）

LES8 \square A

LES16 \square A

LES25 ${ }_{\text {R }}$ A

＊Set values for the controller．

臨 での蓲 플 | 苋 |
| :--- |
| 离 |

岗

 $\stackrel{0}{4}$

Model	LES8	LES16	LES25
B side parallelism to A side	0.4 mm		
B side traveling parallelism to A side	Refer to Graph 1.		
C side perpendicularity to A side	0.2 mm		
M dimension tolerance	$\pm 0.3 \mathrm{~mm}$		
W dimension tolerance	$\pm 0.2 \mathrm{~mm}$		

Graph 1 B side traveling parallelism to A side

Table Deflection (Reference Value)

Pitching moment

Table displacement due to pitch moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LES8

LES16

LES25

Yawing moment

Table displacement due to yaw moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LES8

LES16

LES25

Rolling moment

Table displacement due to roll moment load Table displacement of section A when loads are applied to the section F with the slide table retracted.

LES8
$\mathbf{L r}=80 \mathrm{~mm}$

Electric Slide Table/ Compact Type

 Series LES LES8,16, 25How to Order

2 Motor mounting position

(5) Stroke [mm]

Stroke	30	50	75	100	125	150
Model	©*	\bullet^{*}	\bullet	-	-	-
LES8	\bullet		-			
LES16	\bullet^{*}	\bullet^{*}	\bullet	\bullet	-	-
LES25	$\bullet *$	\bullet	\bullet	\bullet	\bullet	\bullet

* R/L type with lock is not available.

Motor option

Nil	Without option
B	With lock

Nil	Without option
S	Dust-protected*

* For R/L type (IP5X equivalent), a scraper is mounted on the rod cover, and gaskets are mounted on both the end covers. For D type, a scraper is mounted on the rod cover.
(3) Motor type

Symbol	Type	Compatible controller/ driver
Nil	Step motor (Servo/24 VDC)	LECP6 LECP1 LECPA LECPMJ
A	Servo motor* (24 VDC)	LECA6

* LES25DA is not available.

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LES series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA).
Refer to page 559 for the noise filter set. Refer to the LECA Operation Manual for installation.
(3) CC-Link direct input type (LECPMJ) is not CE-compliant.

[UL-compliant products]

When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.
Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

[^1]

Basic type (R type)

Symmetrical type (L type)

In-line motor type (D type)

8 Mounting*

Symbol	Mounting	R type L type	D type
Nil	Without side holder	\bullet	\bigcirc
\mathbf{H}	With side holder (4 pcs.)	-	\bigcirc

* Refer to page 330 for details.

(9) Actuator cable type*1

Nil	Without cable
S	Standard cable*2
\mathbf{R}	Robotic cable (Flexible cable)

*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
*2 Only available for the motor type "Step motor."

10 Actuator cable length [m]
Nil Without cable $\mathbf{1}$ 1.5 3 3 5 5 8 8^{*} A 10^{*} B 15^{*} C 20^{*}

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 317.

11 Controller/Driver type*1		
Nil	Without controller/driver	
6N	LECP6/LECA6	NPN
6P	(Step data input type)	PNP
1N	$\begin{gathered} \text { LECP1*2 } \\ \text { (Programless type) } \\ \hline \end{gathered}$	NPN
1P		PNP
MJ	LECPMJ*2*3 (CC-Link direct input type)	-
AN	LECPA*2*4(Pulse input type)	NPN
AP		PNP

*1 For details about controller/driver and compatible motor, refer to the compatible controller/driver below.
*2 Only available for the motor type "Step motor."
*3 Not applicable to CE.
*4 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) on page 587 separately.
12 I/O cable length*1, Communication plug

$\mathbf{N i l}$	Without cable (Without communication plug connector)*3
$\mathbf{1}$	1.5 m
$\mathbf{3}$	$3 \mathrm{~m}^{* 2}$
$\mathbf{5}$	$5 \mathrm{~m}^{* 2}$
\mathbf{S}	Straight type communication plug connector*3
\mathbf{T}	T-branch type communication plug connector*3

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 559 (For LECP6/ LECA6), page 573 (For LECP1) or page 587 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.
*3 For the LECPMJ, only "Nil", " S " and " T " are selectable since I/O cable is not included.

* DIN rail is not included. Order it separately.

Compatible Controller/Driver

Type	Step data input type	Step data input type	CC-Link direct input type	Programless type	Pulse input type
Series	LECP6	LECA6	LECPMJ	LECP1	LECPA
Features	Value (Step Standar	data) input ontroller	CC-Link direct input	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)	Step motor (Servo/24 VDC)		
Maximum number of step data		64 points		14 points	-
Power supply voltage	24 VDC				
Reference page	Page 551	Page 551	Page 591	Page 567	Page 581

Step Motor（Servo／24 VDC）

Specifications

Step Motor（Servo／24 VDC）

Model			LES8 \square		LES16 \square		LES25 \square	
	Stroke［mm］		30，50， 75		30，50，75， 100		30，50，75，100，125， 150	
	Work load［kg］Note 1）	Horizontal	1		3		5	
		Vertical	0.5	0.25	3	1.5	5	2.5
	Pushing force 30 to 70%［ ${ }^{\text {］}}$ Note 2）3）		6 to 15	4 to 10	23.5 to 55	15 to 35	77 to 180	43 to 100
	Speed［mm／s］Note 1）3）		10 to 200	20 to 400	10 to 200	20 to 400	10 to 200	20 to 400
	Pushing speed［mm／s］		10 to 20	20	10 to 20	20	10 to 20	20
	Max．acceleration／deceleration［mm／s²］		5000					
	Positioning repeatability［mm］		± 0.05					
	Lost motion［mm］Note 4）		0.3 or less					
	Screw lead［mm］		4	8	5	10	8	16
	Impact／Vibration resistance［ $\left.\mathrm{m} / \mathrm{s}^{2}\right]^{\text {Note }}$ 5）		50／20					
	Actuation type		Slide screw＋Belt（R／L type），Slide screw（D type）					
	Guide type		Linear guide（Circulating type）					
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）					
$\stackrel{\sim}{\circ}$	Motor size		$\square 20$		$\square 28$		$\square 42$	
읓	Motor type		Step motor（Servo／24 VDC）					
：	Encoder		Incremental A／B phase（800 pulse／rotation）					
\％	Rated voltage［V］		24 VDC $\pm 10 \%$					
	Power consumption［W］Note 6）		18		69		45	
言	Standby power consumption when operating［W］${ }^{\text {Noie } 7]}$		7		15		13	
岗	Max．instantaneous power consumption［W］${ }^{\text {Note 8）}}$		35		69		67	
－ 5	Type		Non－magnetizing lock					
戓유츙	Holding force［N］${ }^{\text {Note } 9)}$		24	2.5	300	48	500	77
	Power consumption［W］Note 10）${ }^{\text {Nole 9 }}$		4		3.6		5	
\％			24 VDC $\pm 10 \%$					

Note 1）Speed changes according to the work load．Check＂Speed－Work Load Graph（Guide）＂on page 306.
Note 2）Pushing force accuracy is $\pm 20 \%$（F．S．）．
Note 3）The speed and force may change depending on the cable length，load and mounting conditions．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20\％）
Note 4）A reference value for correcting an error in reciprocal operation．
Note 5）Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．） Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 6）The power consumption（including the controller）is for when the actuator is operating．
Note 7）The standby power consumption when operating（including the controller）is for when the actuator is stopped in the set position during the operation．Except during the pushing operation．
Note 8）The maximum instantaneous power consumption（including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply
Note 9）With lock only
Note 10）For an actuator with lock，add the power consumption for the lock．

Specifications

Servo Motor（24 VDC）

Note 1）LES25DA is not available．
Note 2）The pushing force values for LES8 $\square \mathrm{A}$ is 50 to 75% ．Pushing force accuracy is $\pm 20 \%$（F．S．）．
Note 3）A reference value for correcting an error in reciprocal operation．
Note 4）Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．） Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 5）The power consumption（including the controller）is for when the actuator is operating．
Note 6）The standby power consumption when operating（including the controller）is for when the actuator is stopped in the set position during the operation．Except during the pushing operation．
Note 7）The maximum instantaneous power consumption（including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply．
Note 8）With lock only
Note 9）For an actuator with lock，add the power consumption for the lock．

Weight

Step Motor（Servo／24 VDC），Servo Motor（24 VDC）Common

		Without lock						With lock					
Stroke［mm］		30	50	75	100	125	150	30	50	75	100	125	150
Model	LES8 ${ }_{\text {R }}(\mathrm{A})$	0.45	0.54	0.59	－	－	－	－	－	0.66	－	－	－
	LES16 ${ }_{\text {R }}(\mathrm{A})$	0.91	1.00	1.16	1.24	－	－	－	－	1.29	1.37	－	－
	LES25 ${ }_{\text {L }}(\mathrm{A})$	1.81	2.07	2.41	3.21	3.44	3.68	－	2.34	2.68	3.48	3.71	3.95
	LES8D（A）	0.40	0.52	0.58	－	－	－	0.47	0.59	0.65	－	－	－
	LES16D（A）	0.77	0.90	1.11	1.20	－	－	0.90	1.03	1.25	1.33	－	－
	LES25D	1.82	2.05	2.35	3.07	3.27	3.47	2.08	2.31	2.61	3.33	3.53	3.74

Construction: Basic Type/R Type, Symmetrical Type/L Type

B-B

D-D

Component Parts

No.	Description	Material	Note
1	Motor	-	-
2	Body	Aluminum alloy	Anodized
3	Table	Stainless steel	Heat treament + Electroless nickel plating
4	Guide block	Stainless steel	Heat treatment
5	Lead screw	Stainless steel	Heat treatment + Specially treated
6	End plate	Aluminum alloy	Anodized
7	Pulley cover	Synthetic resin	-
8	End cover	Synthetic resin	-
9	Rod	Stainless steel	-
		Structural steel	Electroless nickel plating
10	Bearing stopper	Brass	Electroless nickel plating (LES25R/L \square only)
11	Motor plate	Structural steel	-
12	Socket	Structural steel	Electroless nickel plating
13	Lead screw pulley	Aluminum alloy	-
14	Motor pulley	Aluminum alloy	-
15	Spacer	Stainless steel	LES25R/L \square only
16	Origin stopper	Structural steel	Electroless nickel plating
17	Bearing	-	-
18	Belt	-	-
19	Grommet	Synthetic resin	-
20	Cap	SI	-
21	Sim ring	Structural steel	-

No.	Description	Material	Note
$\mathbf{2 2}$	Stopper	Structural steel	-
$\mathbf{2 3}$	Bushing	-	Dust-protected option only
$\mathbf{2 4}$	Pulley gasket	NBR	Dust-protected option only
$\mathbf{2 5}$	End gasket	NBR	Dust-protected option only
$\mathbf{2 6}$	Scraper	NBR	Dust-protected option only
$\mathbf{2 7}$	Cover	Synthetic resin	-
$\mathbf{2 8}$	Return guide	Synthetic resin	-
29	Cover support	Stainless steel	-
$\mathbf{3 0}$	Steel ball	Special steel	-
$\mathbf{3 1}$	Lock	-	With lock only

Replacement Parts/Belt

Size	Order no.	Note
LES8 \square	LE-D-1-1	Without manual override screw
LES16 \square	LE-D-1-2	-
LES25 \square	LE-D-1-3	-
LES25 \square A	LE-D-1-4	-
LES8 \square	LE-D-1-5	With manual override screw

Replacement Parts/Grease Pack	
Applied portion	
Ouide unit	

Construction: In-line Motor Type/D Type

Shipped together

Component Parts

No.	Description	Material	Note
1	Motor	-	-
2	Body	Aluminum alloy	Anodized
3	Table	Stainless steel	Heat treament + Electroloss nickel paling
4	Guide block	Stainless steel	Heat treatment
5	Lead screw	Stainless steel	Heat treatment + Specially treated
6	End plate	Aluminum alloy	Anodized
7	Motor flange	Aluminum alloy	Anodized
8	Stopper	Structural steel	-
9	Motor cover	Aluminum alloy	Anodized
10	End cover	Aluminum alloy	Anodized
11	Motor end cover	Aluminum alloy	Anodized
12	Rod	Stainless steel	-
13	Bearing stopper	Structural steel	Electroless nickel plating
		Brass	Electroless nickel plating (LES25D \square only)
14	Socket	Structural steel	Electroless nickel plating
15	Hub (Lead screw side)	Aluminum alloy	-
16	Hub (Motor side)	Aluminum alloy	-
17	Spacer	Stainless steel	LES25D \square only
18	Grommet	NBR	-
19	Spider	NBR	-
20	Cover	Synthetic resin	-

No.	Description	Material	Note
$\mathbf{2 1}$	Return guide	Synthetic resin	-
$\mathbf{2 2}$	Cover support	Stainless steel	-
$\mathbf{2 3}$	Steel ball	Special steel	-
$\mathbf{2 4}$	Bearing	-	-
$\mathbf{2 5}$	Sim ring	Structural steel	-
$\mathbf{2 6}$	Masking tape	-	-
$\mathbf{2 7}$	Bushing	-	Dust-protected option only
$\mathbf{2 8}$	Scraper	NBR	Dust-protected option only
$\mathbf{2 9}$	Lock	-	With lock only
$\mathbf{3 0}$	Side holder	Aluminum alloy	Anodized

Optional Parts/Side Holder

Model	Order no.
LES8D	LE-D-3-1
LES16D	LE-D-3-2
LES25D	LE-D-3-3

Replacement Parts/Grease Pack	
Applied portion	Order no.
Guide unit	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

Series LES

Step Motor (Servo/24 VDC)

Dimensions: Basic Type/R Type

LES8R

With lock

Note 1) Range within which the table can move when it returns to origin.
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length.

Connector		
Motor cable	Step motor	Servo motor
	ㅎut	
	$\xrightarrow{20}$	$\stackrel{24}{\square}$
Lock cable		Hip
	15	15

Dimensions

Dimensions						[mm]	
Model	L	D	E	F	G	H	J
LES8R $\square \square$-30 \square - $\square \square \square \square \square$	94.5	26	88.7	62.5	2	27	27
LES8R $\square \square$-50 \square - $\square \square \square \square \square$	137.5	46	131.7	105.5	3	29	58
LES8R $\square \square$-75 $\square \square-\square \square \square \square \square$	162.5	50	156.7	130.5	4	30	60

Dimensions：Basic Type／R Type

LES16R

With lock

Note 1）Range within which the table can move when it returns to origin．
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 2）Position after return to origin．
Note 3）［ ］for when the direction of return to origin has changed．
Note 4）If workpiece retaining screws are too long，they can touch the guide block and cause a malfunction． Use screws that are between the maximum and minimum screw－in depths in length．

Connector		
	Step motor	Servo motor
Motor cable		
Lock cable	$\frac{\text { 圔 } 84}{15}$	$\begin{aligned} & 184 \\ & 15 \\ & \hline 15 \end{aligned}$

Dimensions

Dimensions								
Model	L	C	D	E	F	G	H	J
LES16R $\square \square$－30 \square－$\square \square \square \square \square$	108.5	4	38	102.3	78	2	40	40
LES16R $\square \square$－50 $\square-\square \square \square \square \square$	136.5	6	34	130.3	106	2	78	78
LES16R $\square \square-75 \square \square-\square \square \square \square \square$	180.5	8	36	174.3	150	4	36	72
LES16R $\square \square$－100 $\square \square-\square \square \square \square \square$	205.5	10	36	199.3	175	5	36	108

Series LES

Step Motor (Servo/24 VDC)

Dimensions: Basic Type/R Type

LES25R

With lock

Connector		
	Step motor	Servo motor
Motor cable		
Lock cable	$\begin{aligned} & \text { 䠅 } \\ & 15 \end{aligned}$	

Dimensions

Note 1) Range within which the table can move when it returns to origin.
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length.

Electric Slide Table／Compact Type

Series LES
Step Motor（Servo／24 VDC）
Servo Motor（24 VDC）

Dimensions：Symmetrical Type／L Type

LES8L

Note 1）Range within which the table can move when it returns to origin．
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 2）Position after return to origin．
Note 3）［ ］for when the direction of return to origin has changed．
Note 4）If workpiece retaining screws are too long，they can touch the guide block and cause a malfunction． Use screws that are between the maximum and minimum screw－in depths in length．

Connector		
	Step motor	Servo motor
$\begin{aligned} & \text { Motor } \\ & \text { cable } \end{aligned}$		
Lock cable		

Dimensions

Dimensions							［mm］
Model	L	D	E	F	G	H	J
LES8L $\square \square$－30 \square－$\square \square \square \square \square$	94.5	26	88.7	62.5	2	27	27
LES8L $\square \square$－50 $\square-\square \square \square \square \square$	137.5	46	131.7	105.5	3	29	58
LES8L $\square \square$－75 $\square \square-\square \square \square \square \square$	162.5	50	156.7	130.5	4	30	60

Series LES

Step Motor (Servo/24 VDC)

Dimensions: Symmetrical Type/L Type
LES16L

Note 1) Range within which the table can move when it returns to origin.
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length.

	Connector	
Motor cable	Step motor	Servo motor
	\cdots	
	$\xrightarrow{20}$	$\xrightarrow{24}$
Lock cable	比	雷
	15	15

Dimensions

Dimensions								
Model	L	C	D	E	F	G	H	J
LES16L $\square \square-30 \square-\square \square \square \square \square$	108.5	4	38	102.3	78	2	40	40
LES16L $\square \square-50 \square-\square \square \square \square \square$	136.5	6	34	130.3	106	2	78	78
LES16L $\square \square-75 \square \square-\square \square \square \square \square$	180.5	8	36	174.3	150	4	36	72
LES16L $\square \square-100 \square \square-\square \square \square \square \square$	205.5	10	36	199.3	175	5	36	108
325								

Dimensions：Symmetrical Type／L Type

LES25L

Dimensions

Model	L	C	D	E	F	G	H	J
LES25L $\square \square$－30 \square－$\square \square \square \square \square$	144.5	4	48	133.5	105	2	46	46
LES25L $\square \square$－50 $\square \square-\square \square \square \square \square$	170.5	6	42	159.5	131	2	84	84
LES25L $\square \square-75 \square \square-\square \square \square \square \square$	204.5	6	55	193.5	165	2	112	112
LES25L $\square \square$－100 $\square \square-\square \square \square \square \square$	277.5	8	50	266.5	238	4	56	112
LES25L $\square \square$－125 $\square \square-\square \square \square \square \square$	302.5	8	55	291.5	263	4	59	118
LES25L $\square \square$－150 $\square \square-\square \square \square \square \square$	327.5	8	62	316.5	288	4	62	124

Series LES

Step Motor (Servo/24 VDC)
Servo Motor (24 VDC)

Dimensions: In-line Motor Type/D Type

A-A

* 1 section (30 st)

* 2 sections (50, 75 st)

Connector		
Motor cable	Step motor	Servo motor
	\#8i4	
	$\xrightarrow{20}$	$\xrightarrow{24}$
Lock		(ix)
	15	15

Note 1) Range within which the table can move when it returns to origin.
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) The distance between the motor end cover and the manual override screw is up to 16 mm . The motor end cover hole size is $\varnothing 5.5$.
Note 5) The table is lower than the motor cover. Make sure it does not interfere with the workpiece.
Note 6) If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction.
Use screws that are between the maximum and minimum screw-in depths in length.
Dimensions

Model	(L)	B	D	E	F	G	J	K
LES8D $\square \square$-30 $\square \square-\square \square \square \square \square$	171.5	26	6	88.5	44.5	2	-	81
LES8D $\square \square$-30B $\square \square-\square \square \square \square \square$	225							
LES8D $\square \square$-50 $\square \square-\square \square \square \square \square$	214.5	46	6	131.5	64.5	4	23	124
LES8D $\square \square-50 \mathrm{~B} \square \square-\square \square \square \square \square \square$	268							
LES8D $\square \square$-75 $\square \square-\square \square \square \square \square$	239.5	50	6	156.5	64.5	4	48	149
LES8D $\square \square$-75B $\square \square-\square \square \square \square \square$	293							

Dimensions: In-line Motor Type/D Type

A-A

* 2 sections ($30,50,75$ st)

* 3 sections (100 st)

Note 1) Range within which the table can move when it returns to origin.
Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) The distance between the motor end cover and the manual override screw is up to 17 mm . The motor end cover hole size is $\varnothing 5.5$.
Note 5) The table is lower than the motor cover. Make sure it does not interfere with the workpiece.
Note 6) If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction.
Use screws that are between the maximum and minimum screw-in depths in length.

Dimensions							[mm]	
Model	(L)	B	D	E	F	G	J	K
LES16D $\square \square$-30 $\square \square-\square \square \square \square \square$	193							
LES16D $\square \square$-30B $\square \square-\square \square \square \square \square$	256.5	38	4	102.5	56.5	4	18.5	95.5
LES16D $\square \square-50 \square \square-\square \square \square \square \square$	221	34	6	1305	65	4	38	
LES16D $\square \square$-50B $\square \square-\square \square \square \square \square$	284.5	34	6	130.5	65	4	38	123.5
LES16D $\square \square-75 \square \square-\square \square \square \square \square$	265	36	8	174.5	84	4	63	167.5
LES16D $\square \square$-75B $\square \square-\square \square \square \square \square$	328.5	36	8	174.5	84	4	63	167.5
LES16D $\square \square$-100 $\square \square-\square \square \square \square \square$	290	36	10	1995	84	6	44	1925
LES16D $\square \square$-100B $\square \square-\square \square \square \square \square$	353.5	36	10	199.5	84	6	44	192.5

Series LES

Step Motor (Servo/24 VDC)

Dimensions: In-line Motor Type/D Type

A-A

* 2 sections (30, 50, 75, 100 st)
* 3 sections (125, 150 st)

With lock

Connector	
Motor cable	Step motor
	Ni4n
	$\xrightarrow{20}$
Lock cable	開
	15

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) The distance between the motor end cover and the manual override screw is up to 4 mm . The motor end cover hole size is $\varnothing 5.5$.
Note 5) The table is lower than the motor cover.
Note 6) If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length.

Dimensions

Model	(L)	B	D	E	F	G	J	K
LES25D \square-30 $\square \square-\square \square \square \square \square$	214	48	4	133.5	81	4	19	121.5
LES25D \square-30B $\square \square-\square \square \square \square \square$	254.5							
LES25D \square-50 $\square \square-\square \square \square \square \square$	240	42	6	159.5	87	4	39	147.5
LES25D \square-50B $\square \square-\square \square \square \square \square$	280.5							
LES25D \square-75 $\square \square-\square \square \square \square \square$	274	55	6	193.5	96	4	64	181.5
LES25D \square-75B $\square \square-\square \square \square \square \square$	314.5							
LES25D \square-100 $\square \square-\square \square \square \square \square$	347	50	8	266.5	144	4	89	254.5
LES25D \square-100B $\square \square-\square \square \square \square \square$	387.5							
LES25D \square-125 $\square \square-\square \square \square \square \square$	372	55	8	291.5	144	6	57	279.5
LES25D \square-125B $\square \square-\square \square \square \square \square$	412.5							
LES25D \square-150 $\square \square-\square \square \square \square \square$	397	62	8	316.5	144	6	69.5	304.5
LES25D \square-150B $\square \square-\square \square \square \square \square$	437.5							

Electric Slide Table／Compact Type Series LES

Side Holder（In－line Motor Type／D Type）

Part no．Note）	A	B	D	E	F	G	Applicable model
LE－D－3－1	45	57.6	6.7	4.5	20	33	LES8D
LE－D－3－2	60	74	8.3	5.5	25	40	LES16D
LE－D－3－3	81	99	12	6.6	30	49	LES25D

Note）Model numbers for 1 side holder．

での

先

Series LESH Page 341

Selection Procedure

Step 3 Check the allowable moment.

Selection Example

Check the work load-speed. <Speed-Work load graph> (Page 332)
Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LESH16 $\square \mathbf{J}-50$ is temporarily selected based on the graph shown on the right side.

Step 2 Check the cycle time.

It is possible to obtain an approximate cycle time by using method 1, but if a more detailed cycle time is required, use method 2.

* Although it is possible to make a suitable selection by using method 1, this calculation is based on a maximum load condition. Therefore, if a more detailed selection for each load is required, use method 2.

Method 1: Check the cycle time graph. (Page 333)

Method 2: Calculation <Speed-Work load graph> (Page 332)
Calculate the cycle time using the
Calculation example)
following calculation method.
T1 to T4 can be calculated as follows.
Cycle time:
T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

- T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

- T2: Constant speed time can be found from the following equation.
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{s}]$
- T4: Settling time varies depending on the conditions such as motor types, load and in position of the step data. Therefore, calculate the settling time with reference to the following value.

Check the allowable moment. <Static allowable moment> (Page 333) <Dynamic allowable moment> (Pages 334, 335) Confirm the moment that applies to the actuator is within the allowable range for both static and dynamic conditions.

Operating conditions
-Workpiece mass: $1[\mathrm{~kg}] \bullet$ Workpiece mounting

- Speed: 220 [mm/s]
- Mounting orientation: Vertical
- Stroke: 50 [mm]
- Acceleration/Deceleration: $5000\left[\mathrm{~mm} / \mathrm{s}^{2}\right]$
- Cycle time: 0.5 seconds

LESH16 \square /Step Motor Vertical

<Speed-Work load graph>

LESH16 $\square /$ Step Motor

<Cycle time>
LESH16/Pitching

<Dynamic allowable moment>

Speed－Work Load Graph（Guide）

Step Motor（Servo／24 VDC）
＊The following graph shows the values when moving force is 100% ．

LESH8 \square

Vertical

LESH16 \square

LESH25

Vertical

Servo Motor（24 VDC）
＊The following graph shows the values when moving force is 250% ．

LESH8 \square A

Vertical

LESH16 \square A

Horizontal

Vertical

LESH $25{ }^{\text {R }}$ A

Horizontal

Vertical

\section*{| 呙 |
| :--- |
| 离 |}

Series LESH

Cycle Time (Guide)

Operating Conditions

Acceleration/Deceleration: $5000 \mathrm{~mm} / \mathrm{s}^{2}$
In position: 0.5 mm

Static Allowable Moment

Model		LESH8		LESH16			LESH25		
Stroke	$[\mathrm{mm}]$	50	$\mathbf{7 5}$	50	$\mathbf{1 0 0}$	$\mathbf{5 0}$	100	150	
Pitching	$[\mathrm{N} \cdot \mathrm{m}]$	11							
Yawing	$[\mathrm{N} \cdot \mathrm{m}]$	11			43	77	112	155	
Rolling	$[\mathrm{N} \cdot \mathrm{m}]$	12		48		146	177	152	

Series LESH

Step Motor (Servo/24 VDC)

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to "Calculation of Guide Load Factor" or the Electric Actuator Selection Software for confirmation, http://www.smcworld.com

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LESH
Size: 8/16/25
Mounting orientation: Horizontal/Bottom/Wall/Vertical

Acceleration [mm/s²]: a
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph with reference to the model, size and mounting orientation.
3. Based on the acceleration and work load, obtain the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.

$$
\alpha \mathbf{x}=\mathbf{X c} / \mathrm{Lx}, \alpha \mathbf{y}=\mathrm{Yc} / \mathrm{Ly}, \alpha \mathbf{z}=\mathrm{Zc} / \mathrm{Lz}
$$

5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ and $\alpha \mathbf{z}$ is 1 or less.

$$
\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha \mathbf{z} \leq \mathbf{1}
$$

When 1 is exceeded, please consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LESH
Size: 8
Mounting orientation: Horizontal
Acceleration [mm/s²]: 5000
Work load [kg]: 1.0
Work load center position [mm]: Xc = 80, Yc = 100, Zc = $\mathbf{6 0}$
2. Select three graphs from the top of the left side first row on page 334.

3. $L x=480 \mathrm{~mm}, L y=225 \mathrm{~mm}, L z=1200 \mathrm{~mm}$
4. The load factor for each direction can be obtained as follows.
$\alpha x=80 / 480=0.17$
$\alpha y=100 / 225=0.44$
$\alpha z=60 / 1200=0.05$
5. $\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha z=0.66 \leq 1$

Series LESH Page 341

Selection Procedure For the compact type LES series, refer to page 311.

Selection Example

Operating conditions

- Pushing force: $90[\mathrm{~N}]$	-Mounting orientation: Vertical upward
-Workpiece mass: $1[\mathrm{~kg}]$	-Pushing time + Operation (A): 1.5 seconds
-Speed: $100[\mathrm{~mm} / \mathrm{s}]$	-All cycle time (B): 6 seconds
-Stroke: $100[\mathrm{~mm}]$	

Step 1
Check the required force.
Calculate the approximate required force for pushing operation. Selection example) •Pushing force: 90 [N]
-Workpiece mass: 1 [kg]
Therefore, the approximate required force can be obtained as $90+10=100[\mathrm{~N}]$.
Select the target model based on the approximate required force with reference to the specifications (Pages 343 and 344). Selection example) Based on the specifications,

- Approximate required force: 100 [N]
- Speed: 100 [mm / s]

Therefore, the LESH25 \square is temporarily selected.
Then, calculate the required force for pushing operation.
If the mounting position is vertical upward, add the actuator table weight.
Selection example) Based on the <Table weight>,
-LESH25 \square table weight: 1.3 [kg] Therefore, the required force can be obtained as $100+13=113[\mathrm{~N}]$.

Step 2
Check the set value of pushing force.
<Set value of pushing force-Force graph> (Page 338)
Select the target model based on the required force with reference to the <Set value of pushing force-Force graph>, and confirm the set value of pushing force.
Selection example) Based on the graph shown on the right side,

- Required force: 113 [N]

Therefore, the LESH25 $\square \mathbf{K}$ is temporarily selected.
This set value of pushing force is 40 [\%].

Check the duty ratio.

Confirm the allowable duty ratio based on the set value of pushing force with reference to the <Allowable duty ratio>. Selection example) Based on the <Allowable duty ratio>,

- Set value of pushing force: 40 [\%]

Therefore, the allowable duty ratio can be obtained as 30 [\%].
Calculate the duty ratio for operating conditions, and confirm it does not exceed the allowable duty ratio.
Selection example) •Pushing time + Operation (A): 1.5 seconds - All cycle time (B): 6 seconds

Therefore, the duty ratio can be obtained as $1.5 / 6 \times 100=25[\%]$, and this is the allowable range.

Based on the above calculation result, the LESH25 $\square \mathrm{K}$-100 is selected.
For allowable moment, the selection procedure is the same as the positioning control.

Table Weight
[kg]

Model	Stroke $[\mathrm{mm}]$			
	50	75	100	150
LESH8	0.2	0.3	-	-
LESH16	0.4	-	0.7	-
LESH25	0.9	-	1.3	1.7

* If the mounting position is vertical upward, add the table weight.

<Set value of pushing force-Force graph>

Allowable Duty Ratio
Step Motor (Servo/24 VDC)

Set value of pushing force (\%)	Duty ratio (\%)	Continuous pushing time (minute)
30	-	-
50 or less	30 or less	5 or less
70 or less	20 or less	3 or less

Servo Motor (24 VDC)

Set value of pushing force $(\%)$	Duty ratio $(\%)$	Continuous pushing time (minute)
50	-	-
75 or less	30 or less	5 or less
100 or less	20 or less	3 or less

* The pushing force of the LESH8 $\square \mathrm{A}$ is up to 75%.

Set Value of Pushing Force－Force Graph

Step Motor（Servo／24 VDC）

LESH8 \square

LESH16 \square

LESH25 \square

Servo Motor（24 VDC）

LESH8 \square A

LESH16 \square A

LESH25 ${ }^{\text {R }}$ A

Series LESH

Table Accuracy

Model	LESH8	LESH16	LESH25
B side parallelism to A side $[\mathrm{mm}]$	Refer to Table 1.		
B side traveling parallelism to A side $[\mathrm{mm}]$	Refer to Graph 1.		
C side perpendicularity to A side $[\mathrm{mm}]$	0.05	0.05	0.05
M dimension tolerance $[\mathrm{mm}]$	± 0.3		
W dimension tolerance $[\mathrm{mm}]$	± 0.2		
Radial clearance $[\mu \mathrm{m}]$	-4 to 0	-10 to 0	-14 to 0

Table 1 B side parallelism to A side

Model	Stroke [mm]			
	$\mathbf{5 0}$	$\mathbf{7 5}$	$\mathbf{1 0 0}$	$\mathbf{1 5 0}$
LESH8	0.055	0.065	-	-
LESH16	0.05	-	0.08	-
LESH25	0.06	-	0.08	0.125

Graph 1 B side traveling parallelism to A side

Table Deflection (Reference Value)

Table displacement due to pitch moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESH8

LESH16

LESH25

Table displacement due to yaw moment load Table displacement when loads are applied to the section marked with the arrow with the slide table stuck out.

LESH8

LESH16

LESH25

Table displacement due to roll moment load Table displacement of section A when loads are applied to the section F with the slide table retracted.

LESH16
Lr $=120 \mathrm{~mm}$

LESH25
$\mathbf{L r}=200 \mathrm{~mm}$

㐍
㐫

Electric Slide Table/ High Rigidity Type

 Series LESH Leshb, 16, 25

4 Lead [mm]

Symbol	LESH8	LESH16	LESH25
\mathbf{J}	8	10	16
K	4	5	8

* R/L type with lock is not available.

6 Motor option	
Nil	Without option
\mathbf{B}	With lock

7 Body option	
NiI	Without option
S	Dust-protected*

* For R/L type (IP5X equivalent), a scraper is mounted on the rod cover, and gaskets are mounted on both the end covers. For D type, a scraper is mounted on the rod cover.
(3) Motor type

Symbol	Type	Compatible controller/ driver
Nil	Step motor (Servo/24 VDC)	LECP6 LECP1 LECPA LECPMJ
A	Servo motor* (24 VDC)	LECA6

* LESH25DA is not available.

\triangle Caution

[CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LES series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) For the servo motor (24 VDC) specification, EMC compliance was tested by installing a noise filter set (LEC-NFA).
Refer to page 559 for the noise filter set. Refer to the LECA Operation Manual for installation.
(3) CC-Link direct input type (LECPMJ) is not CE-compliant.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller/driver should be used with a UL1310 Class 2 power supply.

The actuator and controller/driver are sold as a package.
Confirm that the combination of the controller/driver and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller/driver.
(2) Check Parallel I/O configuration matches (NPN or PNP).

* Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

Electric Slide Table/High Rigidity Type Series LESH
 Step Motor (Servo/24 VDC)
 Servo Motor (24 VDC)

Basic type (R type)

Symmetrical type (L type)

In-line motor type (D type)

صٌ

Mounting*

Symbol	Mounting	R type L type	D type
Nil	Without side holder	\bigcirc	\bigcirc
\mathbf{H}	With side holder (4 pcs.)	-	\bigcirc

* Refer to page 356 for details.

(9) Actuator cable type*1

Nil	Without cable
S	Standard cable*2
\mathbf{R}	Robotic cable (Flexible cable)

*1 The standard cable should be used on fixed parts. For using on moving parts, select the robotic cable.
*2 Only available for the motor type "Step motor."

10 Actuator cable length [m]
Nil Without cable 1 1.5 3 3 5 5 8 8^{*} A 10^{*} B 15^{*} C 20^{*}

* Produced upon receipt of order (Robotic cable only) Refer to the specifications Note 3) on page 343.
(11) Controller/Driver type**

Nil	Without controller/driver	
6N	LECP6/LECA6 (Step data input type)	NPN
6P		PNP
1N	LECP1*2 (Programless type)	NPN
1P		PNP
MJ	LECPMJ*2*3 (CC-Link direct input type)	
AN	$\begin{gathered} \text { LECPA*2*4 } \\ \text { (Pulse input type) } \end{gathered}$	NPN
AP		PNP

*1 For details about controller/driver and compatible motor, refer to the compatible controller/driver below.
*2 Only available for the motor type "Step motor."
*3 Not applicable to CE.
*4 When pulse signals are open collector, order the current limiting resistor (LEC-PA-R- \square) on page 587 separately.
12 I/O cable length**, Communication plug

Nil	Without cable (Without communication plug connector)*3
$\mathbf{1}$	1.5 m
$\mathbf{3}$	$3 \mathrm{~m}^{* 2}$
$\mathbf{5}$	$5 \mathrm{~m}^{* 2}$
S	Stright type communication plug connector*3
T	T-branch type communication plug connector*3

*1 When "Without controller/driver" is selected for controller/driver types, I/O cable cannot be selected. Refer to page 559 (For LECP6/ LECA6), page 573 (For LECP1) or page 587 (For LECPA) if I/O cable is required.
*2 When "Pulse input type" is selected for controller/driver types, pulse input usable only with differential. Only 1.5 m cables usable with open collector.
*3 For the LECPMJ, only "Nil", "S" and "T" are selectable since I/O cable is not included.

13 Controller/Driver mounting

Nil	Screw mounting
D	DIN rail mounting*

* DIN rail is not included. Order it separately.

Type	Step data input type	Step data input type	CC-Link direct input type	Programless type	Pulse input type
Series	LECP6	LECA6	LECPMJ	LECP1	LECPA
Features	Value (St Standar	data) input controller	CC-Link direct input	Capable of setting up operation (step data) without using a PC or teaching box	Operation by pulse signals
Compatible motor	Step motor (Servo/24 VDC)	Servo motor (24 VDC)	Step motor (Servo/24 VDC)		
Maximum number of step data	64 points			14 points	-
Power supply voltage	24 VDC				
Reference page	Page 551	Page 551	Page 591	Page 567	Page 581

Series LESH

Step Motor（Servo／24 VDC）

Specifications

Step Motor（Servo／24 VDC）

Model			LESH8 \square		LESH16 \square		LESH25 \square	
	Stroke［mm］		50， 75		50， 100		50，100， 150	
	Work load［kg］Note 1）3）	Horizontal	2	1	8	5	12	8
		Vertical	0.5	0.25	2	1	4	2
	Pushing force［N］30\％to 70\％Note 2）3）		6 to 15	4 to 10	23.5 to 55	15 to 35	77 to 180	43 to 100
	Speed［mm／s］Note 1）3）		10 to 200	20 to 400	10 to 200	20 to 400	10 to 150	20 to 400
	Pushing speed［mm／s］		10 to 20	20	10 to 20	20	10 to 20	20
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］		5000					
	Positioning repeatability［mm］		± 0.05					
	Lost motion［mm］Note 4）		0.15 or less					
	Screw lead［mm］		4	8	5	10	8	16
	Impact／Vibration resistance［m／s ${ }^{2}$ ］Note 5）		50／20					
	Actuation type		Slide screw＋Belt（R／L type），Slide screw（D type）					
	Guide type		Linear guide（Circulating type）					
	Operating temperature range $\left[{ }^{\circ} \mathrm{C}\right]$		5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）					
$\stackrel{\square}{\circ}$	Motor size		$\square 20$		$\square 28$		$\square 42$	
윷	Motor type		Step motor（Servo／24 VDC）					
：	Encoder		Incremental A／B phase（800 pulse／rotation）					
\％	Rated voltage［V］		24 VDC $\pm 10 \%$					
en	Power consumption［W］Note 6）		20		43		67	
訔	Standby power consumption when operating［ W ］${ }^{\text {Nieie }}$ ］		7		15		13	
这	Max．instantaneous power consumption［W］${ }^{\text {Noie } 8)}$		35		60		74	
\bigcirc	Type		Non－magnetizing lock					
或	Holding force［N］ Note 9）		24	2.5	300	48	500	77
或：	Power consumption［W］Note 10） Rated voltage［V］		4		3.6		5	
			24 VDC $\pm 10 \%$					

Note 1）Speed changes according to the work load．Check＂Speed－Work Load Graph（Guide）＂on page 332.
Note 2）Pushing force accuracy is $\pm 20 \%$（F．S．）．
Note 3）The speed and force may change depending on the cable length，load and mounting conditions．Furthermore，if the cable length exceeds 5 m ，then it will decrease by up to 10% for each 5 m ．（At 15 m ：Reduced by up to 20\％）
Note 4）A reference value for correcting an error in reciprocal operation．
Note 5）Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．） Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 6）The power consumption（including the controller）is for when the actuator is operating．
Note 7）The standby power consumption when operating（including the controller）is for when the actuator is stopped in the set position during the operation．Except during the pushing operation．
Note 8）The maximum instantaneous power consumption（including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply．
Note 9）With lock only
Note 10）For an actuator with lock，add the power consumption for the lock．

Specifications

Servo Motor（24 VDC）

Model			LESH8 \square A		LESH16 \square A		LESH25 ${ }_{\text {R }}{ }^{\text {A Note 1）}}$	
Actuator specifications	Stroke［mm］		50， 75		50， 100		50，100， 150	
	Work load［kg］	Horizontal	2	1	5	2.5	6	4
		Vertical	0.5	0.25	2	1	2.5	1.5
	Pushing force 50 to 100%［N］${ }^{\text {Note 2）}}$		7.5 to 11	5 to 7.5	17.5 to 35	10 to 20	31 to 62	19 to 38
	Speed［mm／s］		1 to 200	1 to 400	1 to 200	1 to 400	1 to 150	1 to 400
	Pushing speed［mm／s］${ }^{\text {Note 2）}}$		1 to 20					
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］		5000					
	Positioning repeatability［mm］		± 0.05					
	Lost motion［mm］Note 3）		0.15 or less					
	Screw lead［mm］		4	8	5	10	8	16
	Impact／Vibration resistance［m／s ${ }^{2}$ ］${ }^{\text {Note 4）}}$		50／20					
	Actuation type		Slide screw＋Belt（R／L type），Slide screw（D type）					
	Guide type		Linear guide（Circulating type）					
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）					
	Motor size		$\square 20$		$\square 28$		$\square 42$	
	Motor output［W］		10		30		36	
	Motor type		Servo motor（24 VDC）					
	Encoder		Incremental A／B（800 pulse／rotation）／Z phase					
	Rated voltage［V］		24 VDC $\pm 10 \%$					
	Power consumption［W］Note 5）		58		84		144	
	Standby power consumption when operating［W］${ }^{\text {Noie ef }}$		4 （Horizontal）／7（Vertical）		2 （Horizontal）／15（Vertical）		4 （Horizontal）／43（Vertical）	
	Max．instantaneous power consumption［W］${ }^{\text {Noie } 7 \text { T }}$		84		124		158	
－ 0	Type		Non－magnetizing lock					
可			24	2.5	300	48	500	77
或：			4		3.6		5	
－			24 VDC $\pm 10 \%$					

Note 1）LESH25DA is not available．
Note 2）The pushing force values for LESH8 $\square \mathrm{A}$ is 50% to 75% ．Pushing force accuracy is $\pm 20 \%$（F．S．）
Note 3）A reference value for correcting an error in reciprocal operation．
Note 4）Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．） Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 5）The power consumption（including the controller）is for when the actuator is operating．
Note 6）The standby power consumption when operating（including the controller）is for when the actuator is stopped in the set position during the operation．Except during the pushing operation．
Note 7）The maximum instantaneous power consumption（including the controller）is for when the actuator is operating．This value can be used for the selection of the power supply．
Note 8）With lock only
Note 9）For an actuator with lock，add the power consumption for the lock．

Weight

Step Motor（Servo／24 VDC），Servo Motor（ 24 VDC）Common

Model		Basic type／R type，Symmetrical type／L type							In－line motor type／D type						
		LESH8 ${ }_{\text {L }}^{\text {R }}$（A）		LESH16 ${ }_{\text {R }}(\mathrm{A})$		LESH25 ${ }_{\text {L }}^{\text {R }}$（A）			LESH8D（A）		LESH16D（A）		LESH25D		
Stroke［mm］		50	75	50	100	50	100	150	50	75	50	100	50	100	150
Product	Without lock	0.55	0.70	1.15	1.60	2.50	3.30	4.26	0.57	0.70	1.25	1.70	2.52	3.27	3.60
weight［kg］	With lock	－	0.76	－	1.71	2.84	3.64	4.60	0.63	0.76	1.36	1.81	2.86	3.61	3.94

Series LESH

Step Motor (Servo/24 VDC)

Construction: Basic Type/R Type, Symmetrical Type/L Type

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Motor	-	-
$\mathbf{2}$	Body	Aluminum alloy	Anodized
$\mathbf{3}$	Table	Stainless steel	Heat treatment + Electroless nickel plating
$\mathbf{4}$	Guide block	Stainless steel	Heat treatment
$\mathbf{5}$	Lead screw	Stainless steel	Heat treatment + Specially treated
$\mathbf{6}$	End plate	Aluminum alloy	Anodized
$\mathbf{7}$	Pulley cover	Synthetic resin	-
$\mathbf{8}$	End cover	Synthetic resin	-
$\mathbf{9}$	Rod	Stainless steel	-
$\mathbf{1 0}$	Bearing stopper	Structural steel	Electroless nickel plating
		Brass	Electroless nickel plating (LESH25RLL only)
$\mathbf{1 1}$	Motor plate	Structural steel	
$\mathbf{1 2}$	Lock nut	Structural steel	Chromate treated
$\mathbf{1 3}$	Socket	Structural steel	Electroless nickel plating
$\mathbf{1 4}$	Lead screw pulley	Aluminum alloy	-
$\mathbf{1 5}$	Motor pulley	Aluminum alloy	-
$\mathbf{1 6}$	Spacer	Stainless steel	LESH25R/L \square only
$\mathbf{1 7}$	Origin stopper	Structural steel	Electroless nickel plating
$\mathbf{1 8}$	Bearing	-	-
$\mathbf{1 9}$	Belt	-	-
$\mathbf{2 0}$	Grommet	Synthetic resin	-
$\mathbf{2 1}$	Sim ring	Structural steel	-
$\mathbf{4 y y}$			

No.	Description	Material	Note
$\mathbf{2 2}$	Bushing	-	Dust-protected option only
$\mathbf{2 3}$	Pulley gasket	NBR	Dust-protected option only
$\mathbf{2 4}$	End gasket	NBR	Dust-protected option only
$\mathbf{2 5}$	Scraper	NBR	Dust-protected option only/Rod
$\mathbf{2 6}$	Cover	Synthetic resin	-
$\mathbf{2 7}$	Return guide	Synthetic resin	-
$\mathbf{2 8}$	Scraper	Stainless steel + NBR	Linear guide
$\mathbf{2 9}$	Steel ball	Special steel	-
$\mathbf{3 0}$	Lock	-	With lock only

Replacement Parts/Belt

Model	Order no.
LESH8 \square	LE-D-1-1
LESH16 \square	LE-D-1-2
LESH25 \square	LE-D-1-3
LESH25 \square A	LE-D-1-4

Replacement Parts/Grease Pack

Applied portion	Order no.
Guide unit	GR-S-010 $(10 \mathrm{~g})$
	GR-S-020 $(20 \mathrm{~g})$

Construction：In－line Motor Type／D Type

Shipped together

Component Parts

No．	Description	Material	Note
1	Motor	－	－
2	Body	Aluminum alloy	Anodized
3	Table	Stainless steel	Heat treamment＋Electroless nickel paling
4	Guide block	Stainless steel	Heat treatment
5	Lead screw	Stainless steel	Heat treatment＋Specially treated
6	End plate	Aluminum alloy	Anodized
7	Motor flange	Aluminum alloy	Anodized
8	Motor cover	Aluminum alloy	Anodized
9	End cover	Aluminum alloy	Anodized
10	Motor end cover	Aluminum alloy	Anodized
11	Rod	Stainless steel	－
12	Bearing stopper	Structural steel	Electroless nickel plating
		Brass	Electroless nickel plating （LESH25D \square only）
13	Socket	Structural steel	Electroless nickel plating
14	Hub（Lead screw side）	Aluminum alloy	－
15	Hub（Motor side）	Aluminum alloy	－
16	Spacer	Stainless steel	LESH25D \square only
17	Grommet	NBR	－
18	Spider	NBR	－
19	Cover	Synthetic resin	－
20	Return guide	Synthetic resin	－
21	Scraper	Stainless steel＋NBR	Linear guide

No．	Description	Material	Note
$\mathbf{2 2}$	Steel ball	Special steel	-
$\mathbf{2 3}$	Bearing	-	-
$\mathbf{2 4}$	Sim ring	Structural steel	-
25	Masking tape	-	-
26	Scraper	NBR	Dust－protected option only／ Rod
$\mathbf{2 7}$	Lock	-	With lock only
$\mathbf{2 8}$	Side holder	Aluminum alloy	Anodized

Optional Parts／Side Holder

Model	Order no．
LESH8D	LE－D－3－1
LESH16D	LE－D－3－2
LESH25D	LE－D－3－3

Replacement Parts／Grease Pack

Applied portion	Order no．
Guide unit	GR－S－010 $(10 \mathrm{~g})$
	GR－S－020 $(20 \mathrm{~g})$

Series LESH

Step Motor (Servo/24 VDC)

Dimensions: Basic Type/R Type

LESH8R

A-A
G $\times \mathrm{M} 4 \times 0.7$ thread depth 8

$[\mathrm{mm}]$								
Model	C	F	G	J	K	M	N	
LESH8R $\square \square-50 \square \square-\square \square \square \square \square$	46	29	3	58	111	125.5	95.5	
LESH8R $\square \square-75 \square \square-\square \square \square \square \square$	50	30	4	60	137	151.5	121.5	

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length.

Dimensions：Basic Type／R Type
LESH16R

Note 1）Range within which the table can move when it returns to origin．Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 2）Position after return to origin．
Note 3）［ ］for when the direction of return to origin has changed．
Note 4）If workpiece retaining screws are too long，they can touch the guide block and cause a malfunction． Use screws that are between the maximum and minimum screw－in depths in length．

Series LESH

Step Motor (Servo/24 VDC)

Dimensions: Basic Type/R Type

$[\mathrm{mm}]$								
Model	C	D	F	G	J	K	M	N
LESH25R $\square-50 \square \square-\square \square \square \square \square$	75	4	80	2	80	143	168	132
LESH25R $\square \square-100 \square \square-\square \square \square \square \square$	48	8	44	4	88	207	232	196
LESH25R $\square \square-150 \square \square-\square \square \square \square \square$	65	8	66	4	132	285	310	274

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length.

Dimensions：Symmetrical Type／L Type
LESH8L
$3 \times$ M3 $\times 0.5$ thread depth 5.5

Model	C	F	G	J	K	M	N
	46	29	3	58	111	125.5	95.5
LESH8LD－75	50	30	4	60	137	151.5	121.5

Note 1）Range within which the table can move when it returns to origin．Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 2）Position after return to origin．
Note 3）［ ］for when the direction of return to origin has changed．
Note 4）If workpiece retaining screws are too long，they can touch the guide block and cause a malfunction． Use screws that are between the maximum and minimum screw－in depths in length．

Series LESH

Step Motor (Servo/24 VDC)

Dimensions: Symmetrical Type/L Type

LESH16L

	[mm]								
Model	C	D	F	G	J	K	M	N	
LESH16L $\square \square-50 \square \square-\square \square \square \square \square$	40	6	45	2	45	116.5	135.5	106	
LESH16L $\square \square-100 \square \square-\square \square \square \square \square$	44	8	44	4	88	191.5	210.5	181	

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length.

Dimensions: Symmetrical Type/L Type

LESH25L

Model								
LESH25L $\square \square-50 \square \square-\square \square \square \square \square$	75	4	80	2	80	143	168	132
LESH25L $\square \square-100 \square \square-\square \square \square \square \square$	48	8	44	4	88	207	232	196
LESH25L $\square \square-150 \square \square-\square \square \square \square \square$	65	8	66	4	132	285	310	274

[^2]
Series LESH

Step Motor (Servo/24 VDC)

Dimensions: In-line Motor Type/D Type

LESH8D

A-A

Connector		
	Step motor	Servo motor
Motor cable		
Lock cable		

Model	L	B	E	F	J	K
LESH8D $\square \square$-50 $\square \square-\square \square \square \square \square$	201.5	46	111	54.5	19.5	110.5
LESH8D $\square \square$-50B $\square \square-\square \square \square \square \square$	255					
LESH8D $\square \square$-75 $\square \square-\square \square \square \square \square$	227.5	50	137	55.5	44.5	136.5
LESH8D $\square \square$-75B $\square \square-\square \square \square \square \square$	281					

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed.
Note 4) The distance between the motor end cover and the manual override screw is up to 16 mm . The motor end cover hole size is $\varnothing 5.5$.
Note 5) If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length.

Dimensions: In-line Motor Type/D Type

LESH16D

A-A

Connector		
Motor cable	Step motor	Servo motor
	$\xrightarrow{20}$	$\xrightarrow{24}$
Lock cable		(104
	15	15

Model							[mm
	L	B	D	E	F	J	K
LESH16D $\square \square$-50 $\square \square-\square \square \square \square \square$	219.5	40	6	116.5	65	39.5	122
LESH16D $\square \square$-50B $\square \square-\square \square \square \square \square$	283						
LESH16D $\square \square$-100 $\square \square-\square \square \square \square \square$	288.5	44	8	191.5	85	88.5	191
LESH16D $\square \square$-100B $\square \square-\square \square \square \square \square$	352						

Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) Position after return to origin.
Note 3) [] for when the direction of return to origin has changed
Note 4) The distance between the motor end cover and the manual override screw is up to 17 mm . The motor end cover hole size is $\varnothing 5.5$.
Note 5) If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length.

Series LESH

Step Motor (Servo/24 VDC)

Dimensions: In-line Motor Type/D Type
LESH25D

Connector	
	Step motor
Motor cable	
Lock cable	

Model	L	B	D	E	F	G	J	K
LESH25D \square-50 $\square \square-\square \square \square \square \square$	237.5	75	4	143	84	4	40.5	144.5
LESH25D \square-50B $\square \square$ - $\square \square \square \square \square$	278							
LESH25D \square-100 $\square \square-\square \square \square \square \square$	299.5	48	8					
LESH25D \square-100B $\square \square-\square \square \square \square \square$	340			207	98.5		88	206.5
LESH25D \square-150 $\square \square-\square \square \square \square \square$	377.5	65		285	126.5	6	69	284.5
LESH25D \square-150B $\square \square-\square \square \square \square \square$	418							

[^3]
Side Holder（In－line Motor Type／D Type）

［mm］
［mart no．Note） A B D E F G Applicable model LE－D－3－1 45 57.6 6.7 4.5 20 33 LESH8D LE－D－3－2 60 74 8.3 5.5 25 40 LESH16D LE－D－3－3 81 99 12 6.6 30 49 LESH25D
Note）Model numbers for 1 side holder．

Series LES/LESH Electric Slide Tables/ Specific Product Precautions 1

Be sure to read this before handling. Refer to page 906 for Safety Instructions. For Electric Actuator Precautions, refer to pages 907 to 912, or "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

Design

\triangle Caution

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable moment. If the product is used outside of the specification limits, the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause failure.

Handling

\triangle Caution

1. INP output signal

1) Positioning operation

When the product comes within the set range by step data [In position], the INP output signal will turn on.
Initial value: Set to [0.50] or higher.
2) Pushing operation

When the effective force exceeds step data [Trigger LV], the INP output signal will turn on. Use the product within the specified range of [Pushing force] and [Trigger LV].
To ensure that the actuator pushes the workpiece with the set [Pushing force], it is recommended that the [Trigger LV] be set to the same value as the [Pushing force].
2. When the pushing operation is used, be sure to set to [Pushing operation]. Never hit at the stroke end except during return to origin.
When incorrect instructions are inputted, such as using the product outside of the specification limits or operation outside of actual stroke through changes in the controller/driver setting and/or origin position, the table may collide against the stroke end of the actuator. Check these points before use.
If the table collides against the stroke end of the actuator, the guide, belt or internal stopper can be broken. This may lead to abnormal operation.

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight.
3. Use the product with the following moving force.

- Step motor (Servo/24 VDC): 100\%
- Servo motor (24 VDC) : 250\%

If the moving force is set below the above values, it may cause an alarm.

Handling

\triangle Caution

4. The actual speed of this actuator is affected by the load.
Check the model selection section of the catalog.
5. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
Additional force will cause the displacement of the origin position since it is based on detected motor torque.
6. The table and guide block are made of special stainless steel, but can rust in an environment where droplets of water adhere to it.
7. Do not dent, scratch or cause other damage to the body, table and end plate mounting surfaces.
This may cause unevenness in the mounting surface, play in the guide or an increase in the sliding resistance.
8. Do not dent, scratch or cause other damage to the surface over which the rail and guide will move.
This may cause play or an increase in the sliding resistance.
9. Do not apply strong impact or an excessive moment while mounting a workpiece.
If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
10. Keep the flatness of mounting surface 0.02 mm or less.

Unevenness of a workpiece or base mounted on the body of the product may cause play on the guide and increased sliding resistance. Do not deform the mounting surface by mounting with workpieces tucked in.
11. Do not drive the main body with the table fixed.
12. When mounting the product, for R/L type fixed cable, keep the following dimension or more for bends in the cable. For D type, keep a 40 mm or longer diameter for bends in the cable.

Series LES/LESH
 Electric Slide Tables/ Specific Product Precautions 2

\triangle
Be sure to read this before handling. Refer to page 906 for Safety Instructions. For Electric Actuator Precautions, refer to pages 907 to 912, or "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

Handling

\triangle Caution

13. When mounting the product, use screws with adequate length and tighten them to the maximum torque or less.
Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

Body fixed/ Side mounting (Body tapped)	Model	Screw size	Max. ighteringtovove N.m]	
	LESD8R/L	M4 x 0.7	1.5	8
	LES $\square 8 \mathrm{D}$	M5 x 0.8	3	10
	LES16R/L			
	LES16D	M6 x 1	5.2	12
	LESH16]			
	LES25R/L			
	LES25D	M8x 1.25	10	16
	LESH25			

Body fixed/ Side mounting (Through-hole)

Model	Screw size		L [mm]
LES8R/L	M3 x 0.5	0.63	23.5
LESH8R/L			25.5
LES $\square 8 \mathrm{D}$	M4 x 0.7	1.5	18.2
LES16R/L			33.5
LES16D	M5 x 0.8	3	25.2
LESH16R/L			35.5
LESH16D			25.5
LES25R/L			49
LES25D	M6 x 1	5.2	39.8
LESH25R/L			50.5
LESH25D			39.5

Workpiece fixed/ Front mounting

Model	Screw size		L [mm]
LES8R/L	M3 x 0.5	0.63	6
LESH8R/L			5.5
LES]8D	M4 $\times 0.7$	1.5	8
LES16R/L	M4 x 0.7	1.5	
LES16D	M5 x 0.8	3	
LESH16口	M5 $\times 0.8$	3	
LES25R/L	M6 x 1	5.2	12
LESH25R/L			10
LES $\square 25 \mathrm{D}$			14

To prevent the workpiece retaining screws from penetrating the end plate, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they can touch the end plate and cause a malfunction.

Screw size	Max. tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\mathrm{L}($ Min. to Max. Screw-in depth $[\mathrm{mm})$)
$\mathrm{M} 3 \times 0.5$	0.63	2.1 to 4.1
	5 (Max.)	
$\mathrm{M} 4 \times 0.7$	1.5	2.7 to 5.7
$\mathrm{M} 5 \times 0.8$	3	6.5 (Max.)
	M6 $\times 1$	5.2

To prevent the workpiece retaining screws from touching the guide block, use screws that are the maximum screw-in depth or less. If long screws are used, they can touch the guide block and cause a malfunction.

Body fixed/Side mounting (Side holder)

Model	Screw size	Max. tightening torque [$\mathrm{N} \cdot \mathrm{m}$]	\mathbf{L} [mm]
LESH8D	$\mathrm{M} 4 \times 0.7$	1.5	6.7
LESH16D	$\mathrm{M} 5 \times 0.8$	3	8.3
LESH25D	$\mathrm{M} 6 \times 1$	5.2	12

When using the side holders to install the actuator, be sure to use the positioning pin. It can be displaced when vibration or excessive external force is applied.
14. In pushing operation, set the product to a position of at least 0.5 mm away from a workpiece. (This position is referred to as a pushing start position.)

If the product is set to the same position as a workpiece, the following alarms may be generated and operation may become unstable.
a. "Posn failed" alarm is generated.

The product cannot reach a pushing start position due to variation in the width of workpieces.
b. "Pushing ALM" alarm is generated.

The product is pushed back from a pushing start position after starting to push.
15. When external force is applied to the table, it is necessary to reduce the work load for the sizing.
When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table increases and may lead to operational failure of the product.
16. When using the side holders to install the actuator, use within the following dimension range.
Otherwise, installation balance will deteriorate and cause loosening.

17. For the LES $\square \square \mathrm{D}$, do not grasp or peel off a masking tape on the bottom of the body.
The masking tape may peel off and foreign matter may get inside the actuator.
18. For the LES $\square \square \mathrm{D}$, a gap will form between the motor flange and table when the table moves (marked with the arrow below). Be careful not to put hands or fingers in a gap.

Handling

\triangle Caution

19. When mounting the body with through-holes in the following mounting orientations, make sure to use two side holders as shown in the figures.
Otherwise, installation balance will deteriorate and cause loosening.

Wall mounting
5 mm or less

Vertical mounting

20. Install the body as shown below with the \bigcirc.

Since the product support becomes unstable, it may cause a malfunction, noise or an increase in the deflection.

21. Even with the same product number, the table of some products can be moved by hand and the table of some products cannot be moved by hand. However, there is no abnormality with these products. (Without lock)
This difference is caused because there is a little variation with the positive efficiency (when the table is moved by the motor) and there is a large variation with the reverse-efficiency (when the table is moved manually) due to the product characteristics. There is hardly any difference among products when they are operated by the motor.

Handling

\triangle Caution

22. For $L E S \square \square_{L}^{R}$, remove the cap and operate the manual override screw with a hexagon wrench.

Maintenance

. Warning

1. Ensure that the power supply is stopped before starting maintenance work or replacement of the product.
2. For lubrication, wear protective glasses.
3. Perform maintenance according to the following requirements.

- Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Belt check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months*	-	\bigcirc
Inspection every $250 \mathrm{~km}^{*}$	-	\bigcirc
Inspection every 5 million cycles*	-	\bigcirc

* Select whichever comes first.
- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for belt check (R/L type only)

Stop operation immediately and replace the belt when belt appear to be below.
a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky.
f. Crack on the back of the belt

[^0]: <Dynamic allowable moment>

[^1]: * Refer to the operation manual for using the products. Please download it via our website, http://www.smcworld.com

[^2]: Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
 Note 2) Position after return to origin.
 Note 3) [] for when the direction of return to origin has changed.
 Note 4) If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length.

[^3]: Note 1) Range within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
 Note 2) Position after return to origin.
 Note 3) [] for when the direction of return to origin has changed.
 Note 4) The distance between the motor end cover and the manual override screw is up to 4 mm . The motor end cover hole size is ø5.5.
 Note 5) If workpiece retaining screws are too long, they can touch the guide block and cause a malfunction. Use screws that are between the maximum and minimum screw-in depths in length.

