Electric Actuator Series LEJ

(\in RoHs

Slider Type/High Rigidity

Low-profile/Low center of gravity

Height dimension reduced by approx. 36\% (Reduced by 32 mm)

Ball Screw Drive Series LEJS

Size: 40, 63 >Page 111
Work load: 85 kg
Positioning repeatability: $\mathbf{\pm} \mathbf{0 . 0 1} \mathbf{~ m m ~ (H i g h ~ p r e c i s i o n ~ t y p e) ~}$ Max. speed: 1800 mm/s
Max, acceleration/deceleration: $20000 \mathrm{~mm} / \mathrm{s}^{2}$
*1 ISO14644-1
*2 The particle generation characteristics change depending on the suction flow rate.

Belt Drive Series LEJB
Size: 40, 63
Page 111
Max. stroke: $\mathbf{3 0 0 0 ~ m m ~}$ Max. speed: $\mathbf{3 0 0 0 ~ m m / s}$ Max. acceleration/deceleration: $20000 \mathrm{~mm} / \mathrm{s}^{2}$

- For incremental encoder
- Pulse input type/ Positioning type Series LECSA

-High precision/High rigidity

-Reduction of the installation labor
Possible to mount the main body without removing the external cover, etc.

Equipped with seal bands as standard
Covers the guide, ball screw and belt. Prevents grease from splashing and external foreign matter from entering.

AC Servo Motor

Ball Screw Drive/Series LEJS

| Model | Lead [mm] | | | Max. speed [mm/s] |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LEJS40 | 24 | 16 | 8 | $1800($ Lead 24) |
| LEJS63 | 30 | 20 | 10 | $1800($ Lead 30) |

Belt Drive/Series LEJB

Electric Actuator/High Rigidity Slider Type

- Solid state auto switch can be mounted (For checking the limit and intermediate signal)
- Switch wiring can be placed in the body
-D-M9 \square W (2-color indication), D-M9 \square

2-color indication solid state auto switch
Appropriate setting of the mounting position
can be performed without mistakes. Operating range

lights up at the optimum operating range.

Red Green Red:
Optimum operating range

Clean Room Specification

Ball Screw Drive Series 11-LEJS Size: 40,63 ISO Class $4{ }^{* 1, \pm 2}$

- Built-in vacuum piping
- Possible to mount the main body without removing the external cover, etc.

Application Examples

Glue dispensing/High speed trajectory is available
Recommended driver:
LECSS (SSCNET II)

Series Variations
Ball Screw Drive/Series LEJS clean room comparite

*1 Please consult with SMC for non-standard strokes as they are produced as special orders.
*2 Except lead 24 and 30 mm
Belt Drive/Series LEJB

[^0]
AC Servo Motor

Electric Actuator/High Rigidity Slider Type Ball Screw Drive Series LEJS

\qquad
How to Order ... Page 123
Specifications .. Page 124
Construction ... Page 125
Dimensions ... Page 126

AC Servo Motor
Electric Actuator/High Rigidity Slider Type Ball Screw Drive Series 11-LEJS
Model Selection Page 111
Particle Generation Characteristics Page 522
How to Order Page 524
Specifications Page 525
Dimensions Page 526Electric Actuator/High Rigidity Slider Type Belt Drive Series LEJB

Model Selection Page 111
How to Order Page 128
Specifications Page 129
Construction Page 130
Dimensions Page 131
Auto Switch Page 133
Specific Product Precautions Page 136
AC Servo Motor Driver

Series LECSA/LECSB/LECSC/LECSS
Page 598
Series LECSS-T Page 620
Series LECYM/LECYU Page 648

Electric Actuators

High Rigidity Slider Type

Ball Screw Drive Series LEJS

Belt Drive Series LEJB

Selection Procedure

Selection Example

Operating conditions

- Work load: 60 [kg]
- Speed: 300 [mm/s]
- Acceleration/Deceleration: 3000 [mm/s $\left.{ }^{2}\right]$
- Stroke: 300 [mm]
- Mounting orientation: Horizontal
- Motor type: Incremental encoder
- External force: 10 [N]

Check the speed-work load.
Select the product by referring to "Speed-Work Load Graph" (Page 112).
Selection example) The LEJS63S3B-300 is temporarily selected based on the graph shown on the right side.
The regeneration option may be necessary.
Refer to page 112 for "Required Conditions for Regeneration Option".

Step 2 Check the cycle time.

Refer to method 1 for a rough estimate, and method 2 for a more precise value.
Method 1: Check the cycle time graph (Page 113)
The graph is based on the maximum speed of each size.

Method 2: Calculation

Cycle time T can be found from the following equation.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$

- T1 and T3 can be obtained by the following equation.

The acceleration and deceleration values have upper limits depending on the workpiece mass and the duty ratio.
Check that they do not exceed the upper limit, by referring to "Work load-Acceleration/Deceleration Graph (Guide)" (Pages 115 to 117).
For the ball screw type, there is an upper limit of the speed depending on the stroke. Check that if it does not exceed the upper limit, by referring to the specifications (Page 124).

- T2 can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

- T4 varies depending on the motor type and load. The value below is recommended. T4 $=0.05[\mathrm{~s}]$

Calculation example)
T1 to T4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=300 / 3000=0.1[\mathrm{~s}]$,
$\mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=300 / 3000=0.1[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}$
$=\frac{300-0.5 \cdot 300 \cdot(0.1+0.1)}{300}$
$=0.90$ [s]
$\mathrm{T} 4=0.05[\mathrm{~s}]$
Therefore, the cycle time can be obtained as follows.
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4$
$=0.1+0.90+0.1+0.05$
$=1.15$ [s]

Step 3 Check the allowable moment.

Refer to "Dynamic Allowable Moment" graphs (Pages 118 and 119).

Selection example) Select the LEJS63S3B-300 from the graph on the right side. Confirm that the external force is 20 [N] or less.
(The external force is the resistance due to cable duct, flexible trunking or air tubing.)

<Speed-Work load graph>
(LEJS63)

L : Stroke [mm]
V : Speed [mm/s]
a1: Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right.$]
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right]$
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed
T5: Resting time [s]
Time the product is not running
T6: Total time [s]
Total time from T1 to T5
Duty ratio: Ratio of T to T6
$\mathrm{T} \div \mathrm{T} 6 \times 100$

<Dynamic allowable moment>
(LEJS63)

Speed-Work Load Graph/Required Conditions for "Regeneration Option"(Guide)

LEJS40/Ball Screw Drive

Horizontal

Vertical

LEJB40/Belt Drive
Horizontal

LEJS63/Ball Screw Drive Horizontal

Vertical

LEJB63/Belt Drive

Horizontal

* When the stroke of the LEJB40 series exceeds 1000 mm , the work load is 10 kg .

Required conditions for "Regeneration option"

* Regeneration option is required when using product above regeneration line in graph. (Order separately.)
"Regeneration Option" Models

Operating condition	Regenerative condition	Regeneration option
A	Duty ratio	LEC-MR-RB-032
B	100%	LEC-MR-RB-12

Allowable Stroke Speed

Model	AC servo motor	Lead		Stroke [mm]													
		Symbol	[mm]	Up to 200	Up to 300	Up to 400	Up to 500	Up to 600	Up to 700	Up to 800	Up to 900	Up to 1000	Up to 1100	Up to 1200	Up to 1300	Up to 1400	Up to 1500
LEJS40	$\begin{gathered} 100 \mathrm{~W} / \\ \square 40 \end{gathered}$	H	24	1800				1580	1170	910	720	580	480	410	-	-	-
		A	16	1200				1050	780	600	480	390	320	270	-	-	-
		B	8	600				520	390	300	240	190	160	130	-	-	-
		(Motor rotation speed)			(4500	rpm)		(3938 rpm)	(2925 rpm)	(2250 rpm)	(1800 rpm)	(1463 rpm)	(1200 rpm)	(1013 rpm)	-	-	-
LEJS63	$\begin{gathered} 200 \mathrm{~W} / \\ \square 60 \end{gathered}$	H	30	-			1800			1390	1110	900	750	630	540	470	410
		A	20	-			1200			930	740	600	500	420	360	310	270
		B	10	-			600			460	370	300	250	210	180	150	130
		(Motor roation speed)		-	(3600 rpm)					(2790 rpm)	(2220 rpm)	(1800 rpm)	(1500 rpm)	(1260 rpm)	(1080 rpm)	(930 rpm)	(810 rpm)

Series LEJ

AC Servo Motor Clean Room Specification

Cycle Time Graph (Guide)

LEJS40/Ball Screw Drive
LEJS40 $\square \mathrm{H}$

LEJS40 \square A

LEJS40 \square B

LEJS63/Ball Screw Drive

LEJS63 $\square \mathrm{H}$

LEJS63 $\square \mathrm{A}$

LEJS63 \square B

* Maximum speed/acceleration/deceleration values graph for each stroke

Cycle Time Graph（Guide）

LEJB40／Belt Drive

LEJB63／Belt Drive

出誌

Series LEJ

Work Load-Acceleration/Deceleration Graph (Guide)

LEJS40 $\square \mathrm{A}$

LEJS40 \square B

LEJS63/Ball Screw Drive: Horizontal
LEJS63 $\square \mathrm{H}$

LEJS63 \square A

LEJS63 \square B

Work Load－Acceleration／Deceleration Graph（Guide）

LEJS40／Ball Screw Drive：Vertical

LEJS40 \square H

LEJS40 \square A

LEJS40 \square B

LEJS63／Ball Screw Drive：Vertical
LEJS63 $\square \mathrm{H}$

LEJS63 \square A

LEJS63 \square B

Series LEJ

AC Servo Motor Clean Room Specification

Work Load-Acceleration/Deceleration Graph (Guide)

LEJB40/Belt Drive: Horizontal

LEJB63/Belt Drive: Horizontal

Dynamic Allowable Moment

 Load Factor" or the Electric Actuator Selection Software for confirmation, http://www.smcworld.com

Series LEJ

AC Servo Motor Clean Room Specification

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to "Calculation of Guide Load Factor" or the Electric Actuator Selection Software for confirmation, http://www.smcworld.com

Calculation of Guide Load Factor

1．Decide operating conditions．
Model：LEJS／LEJB
Size：40／63
Mounting orientation：Horizontal／Bottom／Wall／Vertical
Acceleration［mm／s²］：a
Work load［kg］：m
Work load center position［mm］：Xc／Yc／Zc
2．Select the target graph with reference to the model，size and mounting orientation．
3．Based on the acceleration and work load，obtain the overhang［mm］：Lx／Ly／Lz from the graph．
4．Calculate the load factor for each direction．

$$
\alpha \mathbf{x}=\mathrm{Xc} / \mathrm{Lx}, \alpha \mathbf{y}=\mathrm{Yc} / \mathrm{Ly}, \alpha \mathbf{z}=\mathrm{Zc} / \mathrm{Lz}
$$

5．Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ and $\alpha \mathbf{z}$ is 1 or less．

$$
\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha z \leq 1
$$

When 1 is exceeded，please consider a reduction of acceleration and work load，or a change of the work load center position and series．

Example

1．Operating conditions
Model：LEJS
Size： 40
Mounting orientation：Horizontal
Acceleration［mm／s²］： 5000
Work load［kg］： 20
Work load center position［mm］：Xc＝0，Yc＝50，Zc＝ 200
2．Select the graph on page 118，top and left side first row．

3．$L x=220 \mathrm{~mm}, \mathrm{Ly}=210 \mathrm{~mm}, \mathrm{Lz}=430 \mathrm{~mm}$
4．The load factor for each direction can be obtained as follows．

$$
\begin{aligned}
& \alpha x=0 / 220=0 \\
& \alpha y=50 / 210=0.24 \\
& \alpha z=200 / 430=0.47
\end{aligned}
$$

5．$\alpha x+\alpha y+\alpha z=0.71 \leq 1$

Series LEJ

Table Accuracy (Reference Value)

Model	Traveling parallelism [mm] (Every 300 mm)	
	1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
	0.05	0.03
LEJ $\square 63$	0.05	0.03

Note) Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

Note) This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table. (Table clearance is included.)

0 m
出出
山
를
皆

亮先
㐍
플
$\stackrel{8}{8}$
$\stackrel{\text { 装 }}{\rightleftarrows}$
$\stackrel{\stackrel{9}{4}}{\stackrel{\rightharpoonup}{\underset{~}{+}}}$
永

$\stackrel{0}{4}$

Electric Actuator/High Rigidity Slider Type Ball Screw Drive

Series LEJS

(3) Motor type ${ }^{* 1}$

Symbol	Type	Output [W]	Actuator size	Compatible driver*2
S2	AC servo motor (Incremental encoder)	100	40	LECSA \square-S1
S3	AC servo motor (Incremental encoder)	200	63	LECSA \square-S3
S6	AC servo motor (Absolute encoder)	100	40	LECSB \square-S5 LECSC $\square-S 5$ LECSS \square-S5
S7	AC servo motor (Absolute encoder)	200	63	LECSB \square-S7 LECSC \square-S7 LECSS \square-S7

*1 For motor type S2 and S6, the compatible driver part number suffixes are S1 and S5 respectively.
*2 For details of the driver, refer to page 598.

*6 The motor and encoder cables are included. (The lock cable is included when the motor with lock option is selected.)
*7 Standard cable entry direction is "(A) Axis side". (Refer to page 614 for details.)

8 Cable length [m] $]^{55, ~, ~} 8$

Nil	Without cable
2	2 m
$\mathbf{5}$	5 m
\mathbf{A}	10 m

*8 The length of the motor, encoder and lock cables are the same.
(9) Driver type*5

Nil	Compathout driver	Power supply volage [V]
A1	LECSA1-S \square	-
A2	LECSA2-S \square	200 to 120
B1 230		
B2	LECSB1-S \square	100 to 120
C1	LECSB2-S \square	200 to 230
C2	LECSC2-S \square	100 to 120
S1	LECSS1-S \square	100 to 230
S2	LECSS2-S \square	200 to 230

4 Lead [mm]

Symbol	LEJS40	LEJS63
H	24	30
A	16	20
B	8	10

(5) Stroke $[\mathrm{mm}]^{3 / 3}$

*3 Refer to the applicable stroke table for details.
6 Motor option

Nil	Without option
B	With lock

$10 \mathrm{I} / \mathrm{O}$ cable length $[\mathrm{m}]^{* 9}$

$\mathbf{N i l}$	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*9 When "Without driver" is selected for driver type, only "Nil: Without cable" can be selected.
Refer to page 615 if I/O cable is required.
(Options are shown on page 615.)

Applicable Stroke Table*4

Applicable Stroke Table*4										- Standard	
${ }_{\text {Model }}$ Stroke	200	300	400	500	600	700	800	900	1000	1200	1500
LEJS40	\bigcirc	-	-	-	\bigcirc	\bigcirc	-	-	-	-	-
LEJS63	-	\bigcirc	-	\bigcirc							

*4 Please consult with SMC for non-standard strokes as they are produced as special orders.

Compatible Driver

Driver type	Pulse input type /Positioning type	Pulse input type	CC-Link direct input type	SSCNET III type
Series	LECSA	LECSB	LECSC	LECSS
Number of point tables	Up to 7	-	Up to 255	-
Pulse input	\bigcirc	\bigcirc	-	-
Applicable network	-	-	CC-Link	SSCNET III
Control encoder	Incremental 17-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder
Communication function	USB communication	USB communication, RS422 communication	USB communication, RS422 communication	USB communication
Power supply voltage [V]	100 to 120 VAC $(50 / 60 \mathrm{~Hz})$ 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$			
Reference page	Page 598			

When the driver type is selected, the cable is included. Select cable type and cable length. Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver
\qquad
For auto switches, refer to pages 133 to 135.

Electric Actuator／High Rigidity Slider Type Ball Screw Drive

Specifications
AC Servo Motor（100／200 W）

Note 1）Please consult with SMC for non－standard strokes as they are pro－ duced as special orders．
Note 2）For details，refer to＂Speed－Work Load Graph（Guide）＂on page 112.
Note 3）The allowable speed changes according to the stroke．
Note 4）A reference value for correcting an error in reciprocal operation．
Note 5）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw． （Test was performed with the actuator in the ini－ tial state．）
Vibration resistance：No malfunction occurred in a test ranging be－ tween 45 to 2000 Hz ．Test was performed in both an axial direction and a perpendicular di－ rection to the lead screw．（Test was performed with the actuator in the initial state．）

Note 6）The power consumption（including the driver）is for when the actua－ tor is operating．
Note 7）The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during the operation．
Note 8）The maximum instantaneous power consumption（including the driver）is for when the actuator is operating
Note 9）Only when motor option＂With lock＂is selected．
Note 10）For an actuator with lock，add the power consumption for the lock．
Note 11）Sensor magnet position is located in the table center．For detailed dimensions，refer to＂Auto Switch Mounting Position＂on page 133.
Note 12）Do not allow collisions at either end of the table traveling distance． Additionally，when running the positioning operation，do not set within 2 mm of both ends
Note 13）For the manufacture of intermediate strokes，please contact SMC． （LEJS40／Manufacturable stroke range： 200 to 1200 mm ，LEJS63／ Manufacturable stroke range： 300 to 1500 mm ）

Weight

Model	LEJS40									
Stroke［mm］	200	300	400	500	600	700	800	900	1000	1200
Product weight［kg］	5.6	6.4	7.1	7.9	8.7	9.4	10.2	11.0	11.7	13.3
Additional weight with lock［kg］	0.2 （Incremental encoder）／0．3（Absolute encoder）									
Model	LEJS63									
Stroke［mm］	300	400	500	600	700	800	900	1000	1200	1500
Product weight［kg］	11.4	12.7	13.9	15.2	16.4	17.7	18.9	20.1	22.6	26.4
Additional weight with lock［kg］				（Incr	a enc	7 （Ab	ncod			

Series LEJS

AC Servo Motor

Construction

Component Parts

No	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Ball screw assembly	-	
$\mathbf{3}$	Linear guide assembly	-	
$\mathbf{4}$	Table	Aluminum alloy	Anodized
$\mathbf{5}$	Housing A	Aluminum alloy	Coating
$\mathbf{6}$	Housing B	Aluminum alloy	Coating
$\mathbf{7}$	Seal magnet	-	
$\mathbf{8}$	Motor cover	Aluminum alloy	Anodized
9	End cover \mathbf{A}	Aluminum alloy	Anodized
$\mathbf{1 0}$	Roller shaft	Stainless steel	
$\mathbf{1 1}$	Roller	Synthetic resin	
$\mathbf{1 2}$	Bearing stopper	Carbon steel	

No	Description	Material	Note
13	Coupling	-	
14	Table cap	Synthetic resin	
15	Seal band holder	Synthetic resin	
16	Blanking plate	Aluminum alloy	Anodized
17	Motor	-	
18	Grommet	NBR	
19	Dust seal band	Stainless steel	
20	Bearing	-	
21	Bearing	-	
22	Nut fixing pin	Carbon steel	
23	Magnet	-	
24	Seal band stopper	Stainless steel	

Dimensions：Ball Screw Drive

LEJS40

Note 1）Distance within which the table can move when it returns to origin．Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 2）The Z－phase first detecting position from the stroke end of the motor side．
Note 3）Auto switch magnet is located in the table center．

Model	L		A	B	n	C	D	E
	Without lock	With lock						
LEJS40S $\square \square$－200 \square－$\square \square \square \square$	523.5	563.5	206	260	6	1	200	80
LEJS40S $\square \square$－300 $\square-\square \square \square \square$	623.5	663.5	306	360	6	1	200	180
LEJS40S $\square \square$－400 $\square-\square \square \square \square$	723.5	763.5	406	460	8	2	400	80
LEJS40S $\square \square$－500 $\square-\square \square \square \square$	823.5	863.5	506	560	8	2	400	180
LEJS40S $\square \square$－600 $\square-\square \square \square \square$	923.5	963.5	606	660	10	3	600	80
LEJS40S $\square \square$－700 $\square-\square \square \square \square$	1023.5	1063.5	706	760	10	3	600	180
LEJS40S $\square \square$－800 \square－$\square \square \square \square$	1123.5	1163.5	806	860	12	4	800	80
LEJS40S $\square \square$－900 $\square-\square \square \square \square$	1223.5	1263.5	906	960	12	4	800	180
LEJS40S $\square \square$－1000 \square－$\square \square \square \square$	1323.5	1363.5	1006	1060	14	5	1000	80
LEJS40S $\square \square$－1200 \square－$\square \square \square \square$	1523.5	1563.5	1206	1260	16	6	1200	80

Series LEJS

AC Servo Motor

Dimensions: Ball Screw Drive

LEJS63

Motor option B: With lock

(ø6)

Note 1) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) The Z-phase first detecting position from the stroke end of the motor side.
Note 3) Auto switch magnet is located in the table center.

Model	L		A	B	n	C	D	E
	Without lock	With lock						
LEJS63S $\square \square$-300 \square - $\square \square \square \square$	656.5	696.5	306	370	6	1	200	180
LEJS63S $\square \square$-400 $\square-\square \square \square \square$	756.5	796.5	406	470	8	2	400	80
LEJS63S $\square \square$-500 $\square-\square \square \square \square$	856.5	896.5	506	570	8	2	400	180
LEJS63S $\square \square$-600 $\square-\square \square \square \square$	956.5	996.5	606	670	10	3	600	80
LEJS63S $\square \square$-700 $\square-\square \square \square \square$	1056.5	1096.5	706	770	10	3	600	180
LEJS63S $\square \square$-800 $\square-\square \square \square \square$	1156.5	1196.5	806	870	12	4	800	80
LEJS63S $\square \square$-900 $\square-\square \square \square \square$	1256.5	1296.5	906	970	12	4	800	180
LEJS63S $\square \square$-1000 \square - $\square \square \square \square$	1356.5	1396.5	1006	1070	14	5	1000	80
LEJS63S $\square \square$-1200 \square - $\square \square \square \square$	1556.5	1596.5	1206	1270	16	6	1200	80
LEJS63S $\square \square$-1500 \square - $\square \square \square \square$	1856.5	1896.5	1506	1570	18	7	1400	180

Electric Actuator/High Rigidity Slider Type Belt Drive

Series LEJB

How to Order

2 Motor type*1				
Symbol	Type	Output $[W]$	Actuator size	Compatible driver
S2	AC servo motor (Incremental encoder)	100	40	LECSA■-S1
S3	AC servo motor (Incremental encoder)	200	63	LECSA■-S3
S6	AC servo motor (Absolute encoder)	100	40	LECSB■-S5 LECSC-S5 LECSD-S5
S7	AC servo motor (Absolute encoder)	200	63	LECSB-S7 LECSC-S7 LECSD-S7

*1 For motor type S2 and S6, the compatible driver part number suffixes are S1 and S5 respectively.

Stroke $[\mathrm{mm}]^{\text {22 }}$

*2 Refer to the applicable stroke table for details.

*5 The motor and encoder cables are included. (The lock cable is included when the motor with lock option is selected.)
*6 Standard cable entry direction is "(A) Axis side". (Refer to page 614 for details.)
7 Cable length [m] ${ }^{* 4, * 7}$

Nil	Without cable
2	2 m
5	5 m
A	10 m

*7 The length of the motor, encoder and lock cables are the same.

9 I/O cable length [m]*8

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*8 When "Without driver" is selected for driver type, only "Nil: Without cable" can be selected. Refer to page 615 if I/O cable is required.
(Options are shown on page 615.)

Applicable Stroke Table*3

Applicable Stroke Table*3												- Standard	
Stroke Model	200	300	400	500	600	700	800	900	1000	1200	1500	2000	3000
LEJB40	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	-	-	-	-	-
LEJB63	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc

*3 Please consult with SMC for non-standard strokes as they are produced as special orders.

Compatible Driver

Driver type	Pulse input type /Positioning type	Pulse input type	CC-Link direct input type	SSCNET III type
Series	LECSA	LECSB	LECSC	LECSS
Number of point tables	Up to 7	-	Up to 255	-
Pulse input	\bigcirc	\bigcirc	-	-
Applicable network	-	-	CC-Link	SSCNET III
Control encoder	Incremental 17-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder	Absolute 18-bit encoder
Communication function	USB communication	USB communication, RS422 communication	USB communication, RS422 communication	USB communication
Power supply voltage [V]	100 to 120 VAC $(50 / 60 \mathrm{~Hz})$ 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$			
Reference page	Page 598			

4 When the driver type is selected, the cable is included. Select cable type and cable length. Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver

For auto switches, refer to pages 133 to 135.

Series LEJB

AC Servo Motor

Specifications

Model			LEJB40S ${ }_{6}^{2}$	LEJB63S ${ }_{7}$
	Stroke [mm] ${ }^{\text {Note 1) }}$		200, 300, 400, 500, 600, 700, 800 $900,1000,1200,1500,2000$	$\begin{gathered} 300,400,500,600,700,800 \\ 900,1000,1200,1500,2000,3000 \end{gathered}$
	Work load [kg]	Horizontal	20 (If the stroke exceeds 1000 mm : 10)	30
	Speed [mm / s] Note 2)		2000	3000
	Max. acceleration/deceleration [mm/s ${ }^{2}$]		20000 (Refer to page 117 for limit according to work load and duty ratio.)	
	Positioning repeatability [mm]		± 0.04	
	Lost motion [mm] ${ }^{\text {Note 3) }}$		0.1 or less	
	Lead [mm]		27	42
	Impact/Vibration resistance [m/s ${ }^{2}$] Note 4)		50/20	
	Actuation type		Belt	
	Guide type		Linear guide	
	Allowable external force [N]		20	
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40	
	Operating humidity range [\%RH]		90 or less (No condensation)	
	Regeneration option		May be required depending on speed and work load. (Refer to page 112.)	
	Motor output [W]/Size [mm]		100/■40	200/■60
	Motor type		AC servo motor (100/200 VAC)	
	Encoder		Motor type S2, S3: Incremental 17-bit encoder (Resolution: $131072 \mathrm{p} / \mathrm{rev}$) Motor type S6, S7: Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)	
	Power consumption [W] ${ }^{\text {Note }}$ 5)	Horizontal	65	190
		Vertical	-	-
	Standby power consumption when operating [W] Note 6)	Horizontal	2	2
		Vertical	-	-
	Max. instantaneous power consumption [W] Note 7)		445	725
	Type Note 8)		Non-magnetizing lock	
	Holding force [N]		60	157
	Power consumption at $20^{\circ} \mathrm{C}[\mathrm{W}]^{\text {Note } 9)}$		6.3	7.9
	Rated voltage [V]		$24 \mathrm{VDC}_{-10 \%}^{0}$	

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) For details, refer to "Speed-Work Load Graph (Guide)" on page 112.
Note 3) A reference value for correcting an error in reciprocal operation.
Note 4) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 5) The power consumption (including the driver) is for when the actuator is operating.
Note 6) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 7) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 8) Only when motor option "With lock" is selected.
Note 9) For an actuator with lock, add the power consumption for the lock.
Note 10) Sensor magnet position is located in the table center.
For detailed dimensions, refer to "Auto Switch Mounting Position" on page 133.
Note 11) Do not allow collisions at either end of the table traveling distance. Additionally, when running the positioning operation, do not set within 2 mm of both ends.
Note 12) For the manufacture of intermediate strokes, please contact SMC.
(LEJB40/Manufacturable stroke range: 200 to 2000 mm , LEJB63/Manufacturable stroke range: 300 to 3000 mm)

Weight

Model	LEJB40											
Stroke [mm]	200	300	400	500	600	700	800	900	1000	1200	1500	2000
Product weight [kg]	5.7	6.4	7.1	7.7	8.4	9.1	9.8	10.5	11.2	12.6	14.7	18.1
Additional weight with lock [kg]	0.2 (Incremental encoder)/0.3 (Absolute encoder)											
Model	LEJB63											
Stroke [mm]	300	400	500	600	700	800	900	1000	1200	1500	2000	3000
Product weight [kg]	11.5	12.7	13.8	15.0	16.2	17.4	18.6	19.7	22.1	25.7	31.6	43.4
Additional weight with lock [kg]	0.4 (Incremental encoder)/0.7 (Absolute encoder)											

Motor details

Component Parts

No．	Description	Material	Note
1	Body	Aluminum alloy	Anodized
2	Belt	－	
3	Belt holder	Carbon steel	
4	Belt stopper	Aluminum alloy	
5	Linear guide assembly	－	
6	Table	Aluminum alloy	Anodized
7	Housing A	Aluminum alloy	Coating
8	Housing B	Aluminum alloy	Coating
9	Seal magnet	－	
10	Motor cover	Aluminum alloy	Anodized
11	End cover A	Aluminum alloy	Anodized
12	End cover B	Aluminum alloy	Anodized
13	Roller shaft	Stainless steel	
14	Roller	Synthetic resin	
15	Pulley holder	Aluminum alloy	
16	Drive pulley	Aluminum alloy	
17	Speed reduction pulley	Aluminum alloy	
18	Motor pulley	Aluminum alloy	
19	Spacer	Aluminum alloy	
20	Pulley shaft A	Stainless steel	

No．	Description	Material	Note
$\mathbf{2 1}$	Pulley shaft B	Stainless steel	
$\mathbf{2 2}$	Table cap	Synthetic resin	
$\mathbf{2 3}$	Seal band holder	Synthetic resin	
$\mathbf{2 4}$	Blanking plate	Aluminum alloy	Anodized
$\mathbf{2 5}$	Motor mount plate	Carbon steel	
$\mathbf{2 6}$	Pulley block	Aluminum alloy	Anodized
$\mathbf{2 7}$	Pulley cover	Aluminum alloy	Anodized
$\mathbf{2 8}$	Belt stopper	Aluminum alloy	
29	Side plate	Aluminum alloy	Anodized
$\mathbf{3 0}$	Motor plate	Carbon steel	
$\mathbf{3 1}$	Belt	-	
$\mathbf{3 2}$	Motor	-	
$\mathbf{3 3}$	Grommet	Stainless steel	
34	Dust seal band	-	
$\mathbf{3 5}$	Bearing	-	
$\mathbf{3 6}$	Bearing	Stainless steel	
$\mathbf{3 7}$	Stopper pin	-	
38	Magnet	Stainless steel	
39	Seal band stopper		

Series LEJB

AC Servo Motor

Dimensions: Belt Drive

LEJB40

Note 1) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 2) The Z-phase first detecting position from the stroke end of the motor side.
Note 3) Auto switch magnet is located in the table center.

Model	L	A	B	n	C	D	E
LEJB40S $\square \square$-200 \square - $\square \square \square \square$	542	206	260	6	1	200	80
LEJB40S $\square \square$-300 $\square-\square \square \square \square$	642	306	360	6	1	200	180
LEJB40S $\square \square$-400 \square - $\square \square \square \square$	742	406	460	8	2	400	80
LEJB40S $\square \square$-500 $\square-\square \square \square \square$	842	506	560	8	2	400	180
LEJB40S $\square \square$-600 $\square-\square \square \square \square$	942	606	660	10	3	600	80
LEJB40S $\square \square$-700 $\square-\square \square \square \square$	1042	706	760	10	3	600	180
LEJB40S $\square \square$-800 \square - $\square \square \square \square$	1142	806	860	12	4	800	80
LEJB40S $\square \square$-900 $\square-\square \square \square \square$	1242	906	960	12	4	800	180
LEJB40S $\square \square$-1000 \square - $\square \square \square \square$	1342	1006	1060	14	5	1000	80
LEJB40S $\square \square$-1200 \square - $\square \square \square \square$	1542	1206	1260	16	6	1200	80
LEJB40S $\square \square$-1500 \square - $\square \square \square \square$	1842	1506	1560	18	7	1400	180
LEJB40S $\square \square$-2000 \square - $\square \square \square \square$	2342	2006	2060	24	10	2000	80

Dimensions：Belt Drive
LEJB63

Note 1）Distance within which the table can move when it returns to origin．Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table
Note 2）The Z－phase first detecting position from the stroke end of the motor side．
Note 3）Auto switch magnet is located in the table center．

Model	L	A	B	n	C	D	E
LEJB63S $\square \square$－300 \square－$\square \square \square \square$	704	306	370	6	1	200	180
LEJB63S $\square \square$－400 \square－$\square \square \square \square$	804	406	470	8	2	400	80
LEJB63S $\square \square$－500 \square－$\square \square \square \square$	904	506	570	8	2	400	180
LEJB63S $\square \square$－600 \square－$\square \square \square \square$	1004	606	670	10	3	600	80
LEJB63S $\square \square$－700 \square－$\square \square \square \square$	1104	706	770	10	3	600	180
LEJB63S $\square \square$－800 \square－$\square \square \square \square$	1204	806	870	12	4	800	80
LEJB63S $\square \square$－900 \square－$\square \square \square \square$	1304	906	970	12	4	800	180
LEJB63S $\square \square$－1000 \square－$\square \square \square \square$	1404	1006	1070	14	5	1000	80
LEJB63S $\square \square$－1200 \square－$\square \square \square \square$	1604	1206	1270	16	6	1200	80
LEJB63S $\square \square$－1500 \square－$\square \square \square \square$	1904	1506	1570	18	7	1400	180
LEJB63S $\square \square$－2000 \square－$\square \square \square \square$	2404	2006	2070	24	10	2000	80
LEJB63S $\square \square$－3000 \square－$\square \square \square \square$	3404	3006	3070	34	15	3000	80

Series LEJ
Auto Switch Mounting

Auto Switch Mounting Position

Model	Size	A	B	C	Operating range
LEJS	40	77	80	160	5.5
LEJB					5.0
LEJS	63	83	86	172	7.0
LEJB					6.5

Note) The operating range is a guideline including hysteresis, not meant to be guaranteed. There may be large variations (as much as $\pm 30 \%$) depending on the ambient environment.

Auto Switch Mounting

When mounting the auto switches, they should be inserted into the actuator's auto switches mounting groove from the direction shown in the drawing on the below. Once in the mounting position, use a flat head watchmaker's screwdriver to tighten the included auto switch mounting screw.

Auto Switch Mounting Screw Tightening Torque [$\mathrm{N} \cdot \mathrm{m}$]

Auto switch model	Tightening torque
$\mathbf{D}-\mathbf{M 9} \square \mathbf{(V)}$ $\mathbf{D}-\mathbf{M 9} \square \mathbf{W}(\mathbf{V})$	0.10 to 0.15

Note) When tightening the auto switch mounting screw, use a watchmaker's screwdriver with a handle diameter of about 5 to 6 mm .

Solid State Auto Switch Direct Mounting Style D－M9N（V）／D－M9P（V）／D－M9B（V）C €

Grommet

－2－wire load current is reduced （ 2.5 to 40 mA ）．
－Flexibility is 1.5 times greater than the former model（SMC comparison）．
－Using flexible cable as standard．

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body．The auto switch may be damaged if a screw other than the one supplied is used．

Auto Switch Specifications

Refer to SMC website for the details about products conforming to the international standards．

PLC：Programmable Logic Controller						
D－M9 \square ，D－M9 \square V（With indicator light）						
Auto switch model	D－M9N	D－M9NV	D－M9P	D－M9PV	D－M9B	D－M9BV
Electrical entry	In－line	Perpendicular	In－line	Perpendicular	In－line	Perpendicular
Wiring type	3－wire				2－wire	
Output type	NPN		PNP		－	
Applicable load	IC circuit，Relay，PLC				24 VDC relay，PLC	
Power supply voltage	5，12， 24 VDC （ 4.5 to 28 V ）				－	
Current consumption	10 mA or less				－	
Load voltage	28 VDC or less		－		24 VDC（10 to 28 VDC）	
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA （ 2 V or less at 40 mA ）				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Red LED lights up when turned ON．					
Standards	CE marking，RoHS					

Oilproof Heavy－duty Lead Wire Specifications

Auto switch model		D－M9N \square	D－M9P \square	D－M9B \square
Sheath	Outside diameter［mm］	2.7×3.2（ellipse）		
Insulator	Number of cores	3 cores	／Black）	2 cores（Brown／Blue）
	Outside diameter［mm］	$\varnothing 0.9$		
Conductor	Effective area［ mm^{2} ］	0.15		
	Strand diameter［mm］	$\varnothing 0.05$		
Minimum bending radius［mm］（Reference value）		20		

Note 1）Refer to the Best Pneumatics No． 2 for solid state auto switch common specifications． Note 2）Refer to the Best Pneumatics No． 2 for lead wire lengths．

Weight
［g］

Auto switch model		D－M9N（V）	D－M9P（V）	D－M9B（V）
Lead wire length	8	7		
	$0.5 \mathrm{~m}(\mathbf{N i l})$	$8 \mathrm{~m}(\mathbf{M})$	14	13
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

2-Color Indication Solid State Auto Switch Direct Mounting Style

 D-M9NW(V)/D-MMPW(V)/D-M9BW(V) C ϵRefer to SMC website for the details about products conforming to the
Auto Switch Specifications international standards.

Grommet

- 2-wire load current is reduced (2.5 to 40 mA).
- Flexibility is 1.5 times greater than the former model (SMC comparison).
- Using flexible cable as standard.
- The optimum operating range can be determined by the color of the light. (Red \rightarrow Green \leftarrow Red)

©Caution

Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

PLC: Programmable Logic Controller						
D-M9 \square W, D-M9 \square WV (With indicator light)						
Auto switch model	D-M9NW	D-M9NWV	D-M9PW	D-M9PWV	D-M9BW	D-M9BWV
Electrical entry	In-line	Perpendicular	In-line	Perpendicular	In-line	Perpendicular
Wiring type	3-wire				2-wire	
Output type	NPN		PNP		-	
Applicable load	IC circuit, Relay, PLC				24 VDC relay, PLC	
Power supply voltage	5, 12, 24 VDC (4.5 to 28 V)				-	
Current consumption	10 mA or less				-	
Load voltage	28 VDC	or less			24 VDC (10	to $28 \mathrm{VDC)}$
Load current	40 mA or less				2.5 to 40 mA	
Internal voltage drop	0.8 V or less at 10 mA (2 V or less at 40 mA)				4 V or less	
Leakage current	$100 \mu \mathrm{~A}$ or less at 24 VDC				0.8 mA or less	
Indicator light	Operating range \qquad Red LED lights up. Optimum operating range \qquad Green LED lights up.					
Standards	CE marking, RoHS					

Oilproof Flexible Heavy-duty Lead Wire Specifications

Auto switch model		D-M9NW \square	D-M9PW \square	D-M9BW \square
Sheath	Outside diameter [mm]	2.7×3.2 (ellipse)		
Insulator	Number of cores	3 cores (Bros	e/Black)	2 cores (Brown/Blue)
	Outside diameter [mm]	$\varnothing 0.9$		
Conductor	Effective area [mm²]	0.15		
	Strand diameter [mm]	$\varnothing 0.05$		
Minimum bending radius [mm] (Reference value)		20		

Note 1) Refer to the Best Pneumatics No. 2 for solid state auto switch common specifications. Note 2) Refer to the Best Pneumatics No. 2 for lead wire lengths.

Weight

Auto switch model			D-M9NW(V)	D-M9PW(V)
Lead wire length	$0.5 \mathrm{~m}(\mathbf{N i l})$	8	7	
	$1 \mathrm{~m}(\mathbf{M})$	14	13	
	$3 \mathrm{~m}(\mathbf{L})$	41	38	
	$5 \mathrm{~m}(\mathbf{Z})$	68	63	

Dimensions
D-M9 $\square \mathbf{W}$

Series LEJ
Electric Actuator／
Specific Product Precautions 1
Be sure to read this before handling．Refer to page 906 for Safety Instructions．For Electric Actuator Precautions，refer to pages 907 to 912，or＂Handling Precautions for SMC Products＂and the Operation Manual on SMC website，http：／／www．smcworld．com

Design

© Caution

1．Do not apply a load in excess of the specification limits．
Select a suitable actuator by work load and allowable moment． If the product is used outside of the specification limits，the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide，degrading accuracy and shortening the life of the product．
2．Do not use the product in applications where excessive external force or impact force is applied to it．
The product can be damaged．
The components including the motor are manufactured to precise tolerances．So that even a slight deformation may cause a malfunction or seizure．

Selection

© Warning

1．Do not increase the speed in excess of the specification limits．

Select a suitable actuator by the relationship of the allowable work load and speed，and the allowable speed of each stroke． If the product is used outside of the specification limits，it will have adverse effects such as creating noise，degrading accuracy and shortening the life of the product．
2．When the product repeatedly cycles with partial strokes（ 100 mm or less），lubrication can run out． Operate it at a full stroke at least once a day or every a thousand cycles．
3．When external force is applied to the table，it is necessary to add external force to the work load as the total carried load for the sizing．
When a cable duct or flexible moving tube is attached to the actuator，the sliding resistance of the table increases and may lead to operational failure of the product．

Handling

\triangle Caution

1．Do not allow the table to hit the end of stroke．
When incorrect instructions are inputted，such as using the product outside of the specification limits or operation outside of actual stroke through changes in the controller／driver setting and／or origin position，the table may collide against the stroke end of the actuator．Check these points before use．
If the table collides against the stroke end of the actuator，the guide，belt or internal stopper can be broken．This may lead to abnormal operation．

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight．
2．The actual speed of this actuator is affected by the work load and stroke．
Check specifications with reference to the model selection section of the catalog．
3．Do not apply a load，impact or resistance in addition to the transferred load during return to origin．

4．Do not dent，scratch or cause other damage to the body and table mounting surfaces．
This may cause unevenness in the mounting surface，play in the guide or an increase in the sliding resistance．

5．Do not apply strong impact or an excessive moment while mounting the product or a workpiece．
If an external force over the allowable moment is applied，it may cause play in the guide or an increase in the sliding resistance．

6．Keep the flatness of mounting surface 0.1 mm or less．
Unevenness of a workpiece or base mounted on the body of the product may cause play in the guide and an increase in the sliding resistance．
In the case of overhang mounting（including cantilever），to avoid deflection of the actuator body，use a support plate or support guide．
7．When mounting the actuator，use all mounting holes．
If all mounting holes are not used，it influences the specifications，e．g．，the amount of displacement of the table increases．
8．Do not hit the table with the workpiece in the positioning operation and positioning range．
9．Do not apply external force to the dust seal band．
Particularly during the transportation

巴ٌ

号品๗ خの

Series LEJ

 Electric Actuator/

 Electric Actuator/

 Specific Product Precautions 2

 Specific Product Precautions 2}

Be sure to read this before handling. Refer to page 906 for Safety Instructions. For Electric Actuator Precautions, refer to pages 907 to 912, or "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

Handling

1 Caution

10. When mounting the product, use screws with adequate length and tighten them with adequate torque.

Tightening the screws with a higher torque than recommended may cause a malfunction, whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position.

To prevent the workpiece retaining screws from touching the body, use screws that are 0.5 mm or shorter than the maximum screw-in depth. If long screws are used, they can touch the body and cause a malfunction.
11. Do not operate by fixing the table and moving the actuator body.
12. The belt drive actuator cannot be used vertically for applications.
13. Vibration may occur during operation, this could be caused by the operating conditions.
If it occurs, adjust response value of auto tuning of driver to be lower.
During the first auto tuning noise may occur, the noise will stop when the tuning is complete.
14. When mounting the actuator using the body mounting reference plane, use a pin. Set the height of the pin to be 5 mm or more because of round chamfering. (Recommended height 6 mm)

Maintenance

© Warning

Maintenance frequency

Perform maintenance according to the table below.

Frequency	Appearance check	Internal check	Belt check
Inspection before daily operation	\bigcirc	-	-
Inspection every 6 months $/ 1000 \mathrm{~km} /$ 5 million cycles*	\bigcirc	\bigcirc	\bigcirc

* Select whichever comes first.
- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts.

* For lubrication, use lithium grease No. 2.

2. Loose or mechanical play in fixed parts or fixing screws.

- Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product
a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky.
f. Crack on the back of the belt

[^0]: *1 Please consult with SMC for non-standard strokes as they are produced as special orders
 *2 The belt drive actuator cannot be used vertically for applications.

