# Electric Actuator <br> <br> Series LEM 

 <br> <br> Series LEM}

## Low Profile/Slider Type

## Compact Low Profile

Table height reduced by using belt drive and offset guide.
Mounting interchangeable with the E-MY series

Belt drive unit

## Guide unit



* For LEMC/H/HT, Size 25

Guide mechanism can be selected. Peage 161


\section*{- Mounting interchangeable with the former E-MY series <br>  <br> | Series | $\mathrm{E}-\mathrm{MY} \square 16$ |
| :--- | :--- |
| E-MY | $\mathrm{E}-\mathrm{MY} \square 25$ |}



- Can be connected to various types of guide. (Series LEMB)
 Two mounting directions are available.


## Floating bracket (Option)

## Side support (Option)

The body can be fixed from upward or downward.


* The movable length of the LEM is the stroke +6 mm of table movement, at the time of shipment.


## - Easy maintenance (Series LEMC/H/HT)

The drive unit and the guide unit are separable.


Easy attachment/ detachment
－Motor placement：Mounting position of the motor is user selectable and can either be on the top，bottom，left，or right of the actuator．


## Motor mounting position

| Nil | Top mounting |
| :---: | :--- |
| U | Bottom mounting |
| L＊$^{*}$ | Symmetric，Top mounting |
| LU＊$^{*}$ | Symmetric，Bottom mounting |

－Solid state auto switch can be mounted for checking the limit and intermediate signal．

## 2－color indication solid state auto switch

 Appropriate setting of the mounting position can be performed without mistakes．

## 巴ٌ <br> 

## Application Examples

Variations


Belt Drive Note）Cannot be used for vertical transfer．

| Series | Size | Equivalent lead ［mm］ | Stroke［mm］＊ | Work load：Horizontal ［kg］ | Speed ［ $\mathrm{mm} / \mathrm{s}$ ］ | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LEMB Basic type | 25 | 48 | $50,100,150,200,250,300,350,400,450,500,550,600,700,800,900,1000$ ， （1100），1200，（1300），（1400），1500，（1600），（1700），（1800），（1900）， 2000 | $6(10)^{* *}$ | 1000 | Page 161 |
|  | 32 |  |  | 11 （20）＊＊ | 1000 | Page 161 |
| LEMC Cam follower guide type | 25 | 48 | $50,100,150,200,250,300,350,400,450,500,550,600,700,800,900,1000$ ， （1100），1200，（1300），（1400），1500，（1600），（1700），（1800），（1900）， 2000 | 10 | 1000 | Page 161 |
|  | 32 |  |  | 20 | 1000 | Page 161 |
| LEMH Linear guide single axis type | 25 | 48 | $50,100,150,200,250,300,350,400,450$ ， 500，550，600，（700），（800），（900），（1000） | 10 | 2000 | Page 161 |
|  | 32 |  | $50,100,150,200,250,300,350,400,450,500,550,600,(700)$ ， （800），（900），（1000），（1100），（1200），（1300），（1400），（1500） | 20 | 2000 | Page 161 |
| LEMHT Linear guide double axis type | 25 | 48 | $50,100,150,200,250,300,350,400,450$ ， 500，550，600，（700），（800），（900），（1000） | 10 | 2000 | Page 161 |
|  | 32 |  | $50,100,150,200,250,300,350,400,450,500,550,600,(700)$ ， （800），（900），（1000），（1100），（1200），（1300），（1400），（1500） | 20 | 2000 | Page 161 |

[^0]Model Selection ..... Page 161

## Step Motor (Senvo/24 VDC)

## Electric Actuator/Low Profile Slider Type: Basic Type Series LEMB

|  | How to Order ............................................................................ Page 169 |
| :---: | :---: |
|  | Specifications ............................................................................. Page 171 |
|  | Construction ................................................................................... Page 172 |
|  | Dimensions ................................................................................... Page 173 |
| Step Motor (Senol24 VDC) |  |
| Electric Actuator/L | Profile Slider Type: Cam Follower Guide Type series LEMC |

Step Motor (Servo/24 VDC)

Electric Actuator/Low Profile Slider Type: Linear Guide Type Series LEMH/HT

How to Order ..... Page 187
Specifications ..... Page 189
Construction ..... Page 190
Dimensions ..... Page 192
Auto Switch ..... Page 201
Specific Product Precautions ..... Page 204
Step Motor (Servo/24 VDC) Controller

Programless Controller (With Stroke Study)/Series LECP2 ..... Page 574
Programless Controller/Series LECP1 ..... Page 567
Step Data Input Type/Series LECP6 ..... Page 551
Controller Setting Kit/LEC-W2 ..... Page 560
Teaching Box/LEC-T1 ..... Page 561
CC-Link Direct Input Type/Series LECPMJ ..... Page 591
Controller Setting Kit/LEC-W2 ..... Page 595
Teaching Box/LEC-T1 ..... Page 596
Gateway Unit/Series LEC-G ..... Page 563

## Electric Actuators

## Low Profile Slider Type

## Basic Type Series LEMB



Linear Guide Single Axis Type Series LEMH


Cam Follower Guide Type Series LEMC


Linear Guide Double Axis Type Series LEMHT


## 巽茁

نُّ出覀离忽

崛出

寽
甹



## 㐫




## Selection Procedure

Tentative Selection of Guide Mechanism. Check the speed-work load, work load-acceleration/deceleration.


## Selection Example

Operating conditions

- Work load: 10 [kg]
- Workpiece mounting condition
- Speed: 1000 [mm/s]
- Acceleration/Deceleration: 2500 [mm/s²]
- Stroke: 600 [mm]
- Mounting orientation: Horizontal upward


Step 1
Tentative Selection of Guide Mechanism

| Series | Type | Guideline for tentative model selection |  |  |  |  |  |  | Note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Use of external guide | Direct loaded (Horizontal) | Table accuracy ${ }^{\text {Note }}$ | Direct mount (Wall mounting) | Moment resistance | Max. stroke [mm] | Max. speed [mm/s] |  |
| LEMB | Basic type | © | $\bigcirc$ | $\triangle$ | $\triangle$ | $\triangle$ | 2000 | 1000 | - Light load transfer <br> - Combining with external guide <br> - Long stroke |
| LEMC | Cam follower guide type | $\times$ | © | ( | $\bigcirc$ | $\bigcirc$ | 2000 | 1000 | - Workpiece direct mounting <br> - Long stroke |
| LEMH | Linear guide single axis type | $\times$ | ( | ( | ( | ( | $\begin{aligned} & \text { Size 25: } 1000 \\ & \text { Size 32: } 1500 \end{aligned}$ | 2000 | - Workpiece direct mounting <br> - Provides more moment resistance than the cam follower guide type. <br> - High speed transfer |
| LEMHT | Linear guide double axis type | $\times$ | ( ) | ( ) | ( ) | © | Size 25: 1000 Size 32: 1500 | 2000 | - Workpiece direct mounting <br> - Provides more moment resistance than the linear guide single axis type. <br> - High speed transfer |

© : Most suitable $\bigcirc$ : Suitable $\triangle$ : Usable $\times$ : Not recommended
Note) The table accuracy means the amount of table deflection when a moment is applied.

In conditions where a moment is generated, tentatively select the LEMH series.

## <Speed-Work Load Graph>

Select the target model based on the workpiece mass and speed with reference to the <Speed-Work Load Graph>.

LEMH32


## <Work Load-Acceleration/Deceleration Graph>

Check that the set acceleration/deceleration of the work load is within the allowable range, with reference to the <Work Load-Acceleration/Deceleration Graph>.


## Selection Procedure

Step 2 Check the dynamic allowable moment．


Based on the above calculation result，
 the LEMH32T－500 is selected．

## Step 3 Check the cycle time．

Refer to method 1 for a rough estimate，and method 2 for a more precise value． Method 1：Check the cycle time graph．（Page 163） Method 2：Calculation

Calculate the cycle time using the following calculation method．

## Cycle time：

T can be found from the following equation．
$\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]$
－T1：Acceleration time and T3： Deceleration time can be obtained by the following equation．

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

－T2：Constant speed time can be found from the following equation．

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

－T4：Settling time varies depending on the conditions such as motor types，load and in position of the step data．Therefore，calculate the settling time with reference to the following value．
$\mathrm{T} 4=0.3[\mathrm{~s}]$

Calculation example）
T1 to T4 can be calculated as follows．

$$
\begin{aligned}
\mathrm{T} 1 & =\mathrm{V} / \mathrm{a} 1=1000 / 2500=0.4[\mathrm{~s}] \\
\mathrm{T} 3 & =\mathrm{V} / \mathrm{a} 2=1000 / 2500=0.4[\mathrm{~s}] \\
\mathrm{T} 2 & =\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}} \\
& =\frac{600-0.5 \cdot 1000 \cdot(0.4+0.4)}{1000} \\
& =0.2[\mathrm{~s}] \\
\mathrm{T} 4 & =0.3[\mathrm{~s}]
\end{aligned}
$$

Therefore，the cycle time can be obtained as follows．

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.4+0.2+0.4+0.3 \\
& =1.3[\mathbf{s}]
\end{aligned}
$$



L：Stroke［mm］$\cdots$（Operating condition）
V ：Speed［mm／s］$\cdots$（Operating condition）
a1：Acceleration［mm／s²］．．（Operating condition）
a2：Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right] \cdots$（Operating condition）
T1：Acceleration time［s］
Time until reaching the set speed
T2：Constant speed time［s］
Time while the actuator is operating at a constant speed
T3：Deceleration time［s］
Time from the beginning of the
constant speed operation to stop
T4：Settling time［s］
Time until positioning is completed

## Series LEM

Step Motor (Servo/24 VDC)
Speed-Work Load Graph (Guide)
Step Motor (Servo/24 VDC)

[^1]
## LEMB25



LEMC25


## LEMH/HT25



LEMB32


LEMC32


LEMH/HT32


## Cycle Time Graph (Guide)

LEMB $\square / L E M C \square$ (Speed: 1000 mm/s)


## LEMH $\square / L E M H T \square$ (Speed: 2000 mm/s)



# Model Selection Series LEM <br> Step Motor（Servo／24 VDC） 

The following shows the allowable values of set acceleration to the work loads．
Set the acceleration within the allowable range．

LEMB32


LEMB32（Combining with external guide）／LEMC32

＊Friction coefficient for combining with external guide is 0.1 or less．
LEMH32／LEMHT32



出苞 خ～0舀出莣
 $\stackrel{9}{3}$㐫

 $\stackrel{n}{4}$

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to "Calculation of Guide Load Factor" for confirmation.

* Vertical mounting is not available.


| LAT3 | Motorless | LECYM <br> LECYU | LECSS-T | LECS $\square$ | LEC $\square$ | 25A- | 11-LEJS | 11-LEFS | LEY-X5 | LEH | LER | LEPY <br> LEPS | $\begin{aligned} & \text { LES } \\ & \text { LESH } \end{aligned}$ | LEY <br> LEYG | LEM | LEL | LEJS LEJB | LEFS LEFB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

* Vertical mounting is not available.
* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting

Dynamic Allowable Moment (Series LEMHT)


* Vertical mounting is not available.


## Calculation of Guide Load Factor

1．Decide operating conditions．
Model：LEM
Acceleration［mm／s²］：a
Size：25／32
Mounting orientation：Horizontal／Bottom／Wall

## Work load［kg］：m

Work load center position［mm］：Xc／Yc／Zc
2．Select the target graph with reference to the model，size and mounting orientation．
3．Based on the acceleration and work load，obtain the overhang［mm］：Lx／Ly／Lz from the graph．
4．Calculate the load factor for each direction．

$$
\alpha \mathbf{x}=\mathrm{Xc} / \mathrm{Lx}, \alpha \mathbf{y}=\mathrm{Yc} / \mathrm{Ly}, \alpha \mathbf{z}=\mathrm{Zc} / \mathrm{Lz}
$$

5．Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ and $\alpha \mathbf{z}$ is 1 or less．

$$
\alpha x+\alpha y+\alpha z \leq 1
$$

When 1 is exceeded，please consider a reduction of acceleration and work load，or a change of the work load center position and series．

## Example



3．$L x=420 \mathrm{~mm}, \mathrm{Ly}=\mathbf{3 0 0} \mathbf{~ m m}, \mathrm{Lz}=1000 \mathrm{~mm}$
4．The load factor for each direction can be obtained as follows．

$$
\begin{aligned}
& \alpha x=50 / 420=0.12 \\
& \alpha y=100 / 300=0.34 \\
& \alpha z=200 / 1000=0.2
\end{aligned}
$$

5．$\alpha \mathbf{x}+\alpha y+\alpha z=0.66 \leq 1$


# Electric Actuator/Low Profile Slider Type Basic Type <br> Series LEMB Lemb25, 32 


(3) Equivalent lead

6 Stroke adjustment unit (Included)

$\triangle$ Caution

New Series LEMप25 | Series |  |
| :--- | :--- |
| $\mathrm{E}-\mathrm{MY}$ | $\mathrm{E}-\mathrm{MY} \square 16$ |
| $\mathrm{E}-\mathrm{MY} \square 25$ |  |

How to Order

| Nil | None |
| :---: | :---: |
| $\mathbf{M}$ | Motor side only |
| E | End side only |
| W | Both sides |



* Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.


## Caution

## [CE-compliant products]

(1) EMC compliance was tested by combining the electric actuator LEM series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring.
Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) CC-Link direct input type (LECPMJ) is not CE-compliant.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Refer to pages 202 and 203 for auto switches.

The actuator and controller are sold as a package. (They can be ordered separately.)
Confirm that the combination of the controller and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).

 <br> Actuator cable type}

| Nil | Without cable |
| :---: | :---: |
| S | Standard cable＊ |
| $\mathbf{R}$ | Robotic cable（Flexible cable） |

＊The standard cable should be used on fixed parts．For using on moving parts，select the robotic cable．
10 I／O cable length＊1，Communication plug

| Nil | Without cable（Without communicaion plug connector）＊2 |
| :---: | :---: |
| $\mathbf{1}$ | 1.5 m |
| $\mathbf{3}$ | 3 m |
| $\mathbf{5}$ | 5 m |
| S | Straight type communication plug connector＊2 |
| T | T－branch type communication plug connector＊2 |

＊1 When＂Without controller＂is selected for con－ troller types，I／O cable cannot be selected． Refer to page 580 （For LECP2），page 573 （For LECP1）or page 559 （For LECP6）if I／O cable is required．
＊2 For the LECPMJ，only＂Nil＂，＂S＂and＂T＂are selectable since I／O cable is not included．

## 8 Actuator cable length

| Nil | Without cable | $\mathbf{8}$ | $8 \mathrm{~m}^{*}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1.5 m | $\mathbf{A}$ | $10 \mathrm{~m}^{*}$ |
| $\mathbf{3}$ | 3 m | $\mathbf{B}$ | $15 \mathrm{~m}^{*}$ |
| $\mathbf{5}$ | 5 m | $\mathbf{C}$ | $20 \mathrm{~m}^{*}$ |

＊Produced upon receipt of order（Robotic cable only）
11 Controller mounting

| Nil | Screw mounting |
| :---: | :---: |
| D | DIN rail mounting＊ |

＊DIN rail is not included．Order it separately．

9 Controller type

| Nil | Without controller |  |
| :---: | :---: | :---: |
| 6N | LECP6 <br> （Step data input type） | NPN |
| 6P |  | PNP |
| 2N | LECP2＊ <br> $\binom{$ Programless type }{（With stroke study）} | NPN |
| 2P |  | PNP |
| 1N | LECP1 <br> （Programless type） | NPN |
| 1P |  | PNP |
| MJ | LECPMJ <br> （CC－Link direct input type） | － |

＊Select the LECP2 when setting the stroke range using the stroke adjustment unit or an external stopper．


## Compatible Controller

| Type | Programless type （With stroke study） | Programless type | Step data input type | CC－Link direct input type |
| :---: | :---: | :---: | :---: | :---: |
| Series | LECP2 | LECP1 | LECP6 | LECPMJ |
| Features | End to end operation similar to an air cylinder using the stroke study function | Capable of setting up operation（step data） without using a PC or teaching box | Value（Step data）input Standard controller | CC－Link direct input |
| Compatible motor | Step motor（Servo／24 VDC） |  |  |  |
| Maximum number of step data | 14 points（2 stroke end points +12 intermediate points） | 14 points | 64 points |  |
| Power supply voltage | 24 VDC |  |  |  |
| Reference page | Page 574 | Page 567 | Page 551 | Page 591 |

## Series LEMB

Step Motor (Servo/24 VDC)

| Sper\| |
| :--- |

Table 2 Switch and Acceleration ${ }^{\text {Note) }}$

| Switch no. | Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right]$ |
| :---: | :---: |
| $\mathbf{0}$ | 250 |
| $\mathbf{1}$ | 500 |
| $\mathbf{2}$ | 1000 |
| $\mathbf{3}$ | 1500 |
| $\mathbf{4}$ | 2000 |
| $\mathbf{5}$ | 2500 |
| $\mathbf{6}$ | 3000 |
| $\mathbf{7}$ | 4000 |
| $\mathbf{8}$ | 5000 |
| $\mathbf{9}$ | 6000 |
| $\mathbf{1 0}$ | 7500 |
| $\mathbf{1 1}$ | 10000 |
| $\mathbf{1 2}$ | 12500 |
| $\mathbf{1 3}$ | 15000 |
| $\mathbf{1 4}$ | 17500 |
| $\mathbf{1 5}$ | 20000 |

Note) The factory default setting for the switch is No.O.

Specifications

## Step Motor (Servo/24 VDC)

| Model |  | LEMB25 | LEMB32 |
| :---: | :---: | :---: | :---: |
| Stroke [mm] Note 1) |  | 50, 100, 150, 200, 250 300, 350, 400, 450, 500 550, 600, 700, 800, 900 1000, (1100), 1200, (1300) (1400), 1500, (1600), (1700) (1800), (1900), 2000 | 50, 100, 150, 200, 250 <br> 300, 350, 400, 450, 500 <br> 550, 600, 700, 800, 900 <br> 1000, (1100), 1200, (1300) <br> (1400), 1500, (1600), (1700) <br> (1800), (1900), 2000 |
|  | Work load [kg] ${ }^{\text {Note 2) }}$ Horizontal | 6 (10) | 11 (20) |
|  | Speed [mm/s] ${ }^{\text {Note 2) }}$ | 48 to 1000 (Refer to Table 1 for set values when LECP1 or 2 is selected.) |  |
|  | Max. acceleration/deceleration [mm/s $\mathrm{s}^{2}$ ] Note 9) | 20000 (Depends on the work load.)(Refer to Table 2 for set values when LECP1 or 2 is selected.) |  |
|  | Positioning repeatability [mm] | $\pm 0.08$ |  |
|  | Lost motion [mm] Note 10) | 0.1 or less |  |
|  | Lead [mm] | 48 |  |
|  | Actuation type | Belt |  |
|  | Guide type | Sliding bearing |  |
|  | Operating temperature range [ ${ }^{\circ} \mathrm{C}$ ] | 5 to 40 |  |
|  | Operating humidity range [\%RH] | 90 or less (No condensation) |  |
|  | Allowable external force [ N ] ${ }^{\text {Note 8) }}$ | 10 | 20 |
| $\stackrel{9}{\square}$ | Motor size | $\square 56.4$ |  |
| 읓 | Motor type | Step motor (Servo/24 VDC) |  |
| \% | Encoder | Incremental A/B phase (800 pulse/rotation) |  |
| ¢ | Rated voltage [V] | 24 VDC $\pm 10 \%$ |  |
|  | Power consumption [W] Note 3) | 50 | 52 |
|  | Standby power consumption when operating [W] ${ }^{\text {Noie 4) }}$ | 44 | 44 |
| ш | Max. instantaneous power consumption [W] ${ }^{\text {Note } 5}$ | 123 | 127 |
| 害 | Type Note 6) | Non-magnetizing lock |  |
|  | Holding force [ N ] | 36 |  |
| , | Power consumption [W] Note 7) | 5 |  |
| 한 | Rated voltage [V] | $24 \mathrm{VDC} \pm 10 \%$ |  |

Note 1) Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.
Note 2) Speed changes according to the work load.
Check "Speed-Work Load Graph (Guide)" on page 163. The work load changes according to the work load mounting condition. Check "Dynamic Allowable Moment" on page 165. Furthermore, if the cable length exceeds 5 m , then it will decrease by up to $10 \%$ for each 5 m . ( ): When combined with external guide and the friction coefficient is 0.1 or less.
Note 3) The power consumption (including the controller) is for when the actuator is operating.
Note 4) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during operation.
Note 5) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 6) With lock only
Note 7) For an actuator with lock, add the power consumption for the lock.
Note 8) The resistance value of the attached equipment should be within the allowable external resistance value.
Note 9) Maximum acceleration and deceleration are limited by the work load and stroke. Refer to "Work Load-Acceleration/Deceleration Graph (Guide)" on page 164.
Note 10) A reference value for correcting an error in reciprocal operation.

## Weight



Construction
LEMB


Option：Stroke adjustment unit


Component Parts

| No． | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Body | Aluminum alloy | Anodized |
| $\mathbf{2}$ | Guide plate | Synthetic resin |  |
| $\mathbf{3}$ | Belt | - |  |
| 4 | Belt holder | Carbon steel | Chromated |
| $\mathbf{5}$ | Belt stopper | Aluminum alloy |  |
| 6 | Table | Aluminum alloy | Anodized |
| $\mathbf{7}$ | Blanking plate | Aluminum alloy | Anodized |
| $\mathbf{8}$ | Seal band holder | Synthetic resin |  |
| 9 | End block | Aluminum die－casted | Painting |
| 10 | Pulley holder | Aluminum alloy |  |
| $\mathbf{1 1}$ | Pulley shaft | Stainless steel | Heat treatment + Special treatment |
| 12 | Pulley | Aluminum alloy | Anodized |
| $\mathbf{1 3}$ | Motor pulley | Aluminum alloy | Anodized |
| $\mathbf{1 4}$ | Motor mount | Aluminum die－casted | Painting |
| $\mathbf{1 5}$ | Motor cover | Synthetic resin |  |

Component Parts

| No． | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1 6}$ | Grommet | Synthetic resin |  |
| $\mathbf{1 7}$ | Band stopper | Stainless steel |  |
| $\mathbf{1 8}$ | Motor | - |  |
| 19 | Motor end block | Aluminum die－casted | Painting |
| 20 | Dust seal band | Stainless steel |  |
| 21 | Bearing | - |  |
| 22 | Bearing | - |  |
| 23 | Hexagon bolt | Carbon steel | Chromated |
| 24 | Magnet | - |  |
| 25 | Stroke adjuster | Aluminum alloy | Anodized <br> （Optional） |
| 26 | Motor cover for lock | Aluminum alloy | Anodized <br> Only＂with lock＂ |
| 27 | Grommet | Chloroprene rubber <br> Only＂with lock＂ |  |

## Series LEMB

Step Motor (Servo/24 VDC)

Dimensions Size 25
Refer to page 538 and after for dimensions of the controllers.
Top mounting
LEMB25T- $\square \square-\square \square \square \square \square$


Note 1) [ ] for when the direction of return to origin has changed. (When the LECP6, LECP1 or LECPMJ is used.) Note 2) Origin for when the LECP2 is used. The movable stroke is "Stroke +6 mm ".

## Top mounting

## With lock

LEMB25T- $\square \mathrm{B} \square-\square \square \square \square \square$



## Bottom mounting

## LEMB25UT- $\square \square-\square \square \square \square$

Bottom mounting

## With lock

LEMB25UT- $\square \mathrm{B} \square-\square \square \square \square \square$


## Stroke adjustment unit mounting position

## LEMB25 $\square \mathrm{T}-\square \square \underset{\mathrm{W}}{\mathrm{W}}-\square \square \square \square \square$




Dimensions Size 32
Refer to page 538 and after for dimensions of the controllers．
Top mounting
LEMB32T－$\square \square-\square \square \square \square \square$


Note 1）［ ］for when the direction of return to origin has changed．（When the LECP6，LECP1 or LECPMJ is used．）
Note 2）Origin for when the LECP2 is used．The movable stroke is＂Stroke +6 mm ＂．

Top mounting
With lock
LEMB32T－$\square$ B $\square-\square \square \square \square \square$


## Bottom mounting

LEMB32UT－$\square \square-\square \square \square \square \square$

## Bottom mounting

With lock
LEMB32UT－$\square \mathrm{B} \square-\square \square \square \square \square$


## Stroke adjustment unit mounting position

LEMB32 $\square \mathrm{T}-\square \square \underset{\mathrm{W}}{\mathrm{N}}-\square \square \square \square \square$




## Series LEMB

Step Motor (Servo/24 VDC)

## Side Support

## Side support A

## MY-S25A



## Side support B

 MY-S25B

* A set of side supports consists of a left support and a right support.


## Guide for Side Support Application

When using actuator with longer stroke, implement intermediate support to prevent frame deflection or deflection caused by vibration or external impacts. The spacing (L) of the intermediate supports must be no more than the values shown in the following graph.



## $\triangle$ Caution

1. If the actuator mounting surfaces are not measured accurately, using the intermediate support may cause poor operation. Make sure to level the mounting surface when mounting the actuator. For long stroke operation involving overhang of workpiece, implement intermediate support as recommended even if the support spacing is within the allowable limits shown in the graph. For the intermediate support, order a side support separately.
2. Support brackets are not for mounting. Use them solely for providing support.

## Floating Bracket

MYAJ25 Note) Mounting direction (1) and (2) are available for this model.

## Application Example

Mounting direction (1) (to minimize the installation height)


## Mounting Example



Detail drawing of $\mathrm{Za}_{1}$ (adjustable range)


Floating Parts Dimensions


## Application Example

Mounting direction (2) (to minimize the installation width)


## Mounting Example




Detail drawing of $\mathrm{Za}_{2}$ (adjustable range)


Detail drawing of $\mathbf{Z b}_{2}$ (adjustable range)

Installation of Retaining Screws


## Stroke Adjustment Unit

## LEMB-AJ



Mounting

| Tightening Torque for Retaining Screws $[\mathrm{N} \cdot \mathrm{m}]$ |  |
| :--- | :---: |
| Model |  |
| LEMB-AJ |  |

# Electric Actuator/Low Profile Slider Type Cam Follower Guide Type 


2 Motor mounting position
(3) Equivalent lead


| Nil | Top mounting |
| :---: | :---: |
| $\mathbf{U}$ | Bottom mounting |
| L | Symmetric, Top mounting |
| LU | Symmetric, Bottom mounting |



| Nil | Without option |
| :---: | :---: |
| $\mathbf{B}$ | With lock |


Stroke

- Standard/ $\bigcirc$ : Produced upon receipt of order

| Model Stroke | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 600 | 700 | 800 | 900 | 1000 | 1100 | 1200 | 1300 | 1400 | 1500 | 1600 | 1700 | 1800 | 19 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LEMC25 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | O | - |
| LEMC32 | - | $\bigcirc$ | $\bigcirc$ | - | - | $\bigcirc$ | - | - | - | $\bigcirc$ | - | $\bigcirc$ | - | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ | - | $\bigcirc$ | - |

* Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.


## $\triangle$ Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LEM series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) CC-Link direct input type (LECPMJ) is not CE-compliant.

## [UL-compliant products]

When conformity to UL is required, the electric actuator and controller should be used with a UL1310 Class 2 power supply.

Refer to pages 202 and 203 for auto switches.

The actuator and controller are sold as a package. (They can be ordered separately.)
Confirm that the combination of the controller and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number. This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).



صٌ

## 6 Actuator cable type

| Nil | Without cable |
| :---: | :---: |
| $\mathbf{S}$ | Standard cable＊$^{\text {＊}}$ |
| $\mathbf{R}$ | Robotic cable（Flexible cable） |

＊The standard cable should be used on fixed parts．For using on moving parts，select the robotic cable．
9）I／O cable length＊1，Communication plug

| Nil | Without cable（Without communication plug connector）＊2 |
| :---: | :---: |
| $\mathbf{1}$ | 1.5 m |
| $\mathbf{3}$ | 3 m |
| $\mathbf{5}$ | 5 m |
| $\mathbf{S}$ | Straight type communication plug connector＊2 |
| $\mathbf{T}$ | T－branch type communication plug connector＊2 |

＊1 When＂Without controller＂is selected for con－ troller types，I／O cable cannot be selected． Refer to page 580 （For LECP2），page 573 （For LECP1）or page 559 （For LECP6）if I／O cable is required．
＊2 For the LECPMJ，only＂Nil＂，＂ S ＂and＂ T ＂are selectable since I／O cable is not included．

7 Actuator cable length

| Nil | Without cable | $\mathbf{8}$ | $8 \mathrm{~m}^{*}$ |
| :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 1.5 m | $\mathbf{A}$ | $10 \mathrm{~m}^{*}$ |
| $\mathbf{3}$ | 3 m | $\mathbf{B}$ | $15 \mathrm{~m}^{*}$ |
| $\mathbf{5}$ | 5 m | $\mathbf{C}$ | $20 \mathrm{~m}^{*}$ |

＊Produced upon receipt of order（Robotic cable only）
10 Controller mounting

| Nil | Screw mounting |
| :---: | :---: |
| $\mathbf{D}$ | DIN rail mounting＊ |

＊DIN rail is not included．Order it separately．

8 Controller type

| Nil | Without controller |  |
| :---: | :---: | :---: |
| 6N | LECP6 <br> （Step data input type） | NPN |
| 6P |  | PNP |
| 2N | $\begin{gathered} \text { LECP2* } \\ \binom{\text { Programless type }}{\text { (With stroke study) }} \end{gathered}$ | NPN |
| 2P |  | PNP |
| 1N | LECP1 <br> （Programless type） | NPN |
| 1P |  | PNP |
| MJ | LECPMJ <br> （CC－Link direct input type） | － |

＊Select the LECP2 when setting the stroke range using the stroke adjustment unit or an external stopper．

The stroke adjustment unit is built into the product．

## Compatible Controller

| Type | Programless type （With stroke study） | Programless type | Step data input type | CC－Link direct input type |
| :---: | :---: | :---: | :---: | :---: |
| Series | LECP2 | LECP1 | LECP6 | LECPMJ |
| Features | End to end operation similar to an air cylinder using the stroke study function | Capable of setting up operation（step data） without using a PC or teaching box | Value（Step data）input Standard controller | CC－Link direct input |
| Compatible motor | Step motor（Servo／24 VDC） |  |  |  |
| Maximum number of step data | 14 points（2 stroke end points +12 intermediate points） | 14 points | 64 points |  |
| Power supply voltage | 24 VDC |  |  |  |
| Reference page | Page 574 | Page 567 | Page 551 | Page 591 |

## Series LEMC

Step Motor (Servo/24 VDC)


Speed/Acceleration (Set values for LECP1/2)
Table 1 Switch and Speed ${ }^{\text {Note) }}$

| Switch no. | Speed $[\mathrm{mm} / \mathrm{s}]$ |
| :---: | :---: |
| $\mathbf{0}$ | 48 |
| $\mathbf{1}$ | 75 |
| $\mathbf{2}$ | 100 |
| $\mathbf{3}$ | 150 |
| $\mathbf{4}$ | 200 |
| $\mathbf{5}$ | 250 |
| $\mathbf{6}$ | 300 |
| $\mathbf{7}$ | 350 |
| $\mathbf{8}$ | 400 |
| $\mathbf{9}$ | 450 |
| $\mathbf{1 0}$ | 500 |
| $\mathbf{1 1}$ | 600 |
| $\mathbf{1 2}$ | 700 |
| $\mathbf{1 3}$ | 800 |
| $\mathbf{1 4}$ | 900 |
| $\mathbf{1 5}$ | 1000 |

## Table 2 Switch and Acceleration ${ }^{\text {Note) }}$

| Switch no. | Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right]$ |
| :---: | :---: |
| $\mathbf{0}$ | 250 |
| $\mathbf{1}$ | 500 |
| $\mathbf{2}$ | 1000 |
| $\mathbf{3}$ | 1500 |
| $\mathbf{4}$ | 2000 |
| $\mathbf{5}$ | 2500 |
| $\mathbf{6}$ | 3000 |
| $\mathbf{7}$ | 4000 |
| $\mathbf{8}$ | 5000 |
| $\mathbf{9}$ | 6000 |
| $\mathbf{1 0}$ | 7500 |
| $\mathbf{1 1}$ | 10000 |
| $\mathbf{1 2}$ | 12500 |
| $\mathbf{1 3}$ | 15000 |
| $\mathbf{1 4}$ | 17500 |
| $\mathbf{1 5}$ | 20000 |

Note) The factory default setting for the switch is No.O.

## Weight



Construction

## LEMC



Motor option：With lock


Component Parts

| No． | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Body | Aluminum alloy | Anodized |
| 2 | Belt | - |  |
| $\mathbf{3}$ | L－type bracket | Aluminum alloy | Anodized |
| 4 | Belt stopper | Aluminum alloy |  |
| 5 | End block | Aluminum alloy | Anodized |
| 6 | Pulley holder | Aluminum alloy |  |
| $\mathbf{7}$ | Pulley shaft | Stainless steel | Heat treatment + Special treatment |
| $\mathbf{8}$ | Pulley | Aluminum alloy | Anodized |
| 9 | Motor pulley | Aluminum alloy | Anodized |
| 10 | Motor mount | Aluminum die－casted | Painting |
| 11 | Motor cover | Synthetic resin |  |
| 12 | Grommet | Synthetic resin |  |
| 13 | Motor | - |  |
| 14 | Motor end block | Aluminum alloy | Anodized |
| 15 | Bearing | - |  |
| 16 | Bearing | - |  |
| 17 | Tension plate | Aluminum alloy | Anodized |
| 18 | Hexagon bolt | Carbon steel | Chromated |

Component Parts

| No． | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| 19 | Motor cover for lock | Aluminum alloy | Anodized <br> Only＂with lock＂ |
| 20 | Grommet | CR | Chloroprene rubber <br> Only＂with lock＂ |
| 21 | Guide unit body | Aluminum alloy | Anodized |
| $\mathbf{2 2}$ | Slide table | Aluminum alloy | Anodized |
| 23 | End plate | Aluminum alloy | Anodized |
| 24 | Stopper | Carbon steel | Nickel plating |
| 25 | Stroke adjuster | Aluminum alloy | Anodized |
| 26 | Magnet | - |  |
| 27 | Side cover | Aluminum alloy | Anodized |
| 28 | Cam follower cap | Aluminum alloy | Anodized |
| 29 | Cam follower | - |  |
| 30 | Cam follower | - |  |
| 31 | Eccentric gear | Stainless steel |  |
| 32 | Gear bracket | Stainless steel |  |
| 33 | Adjustment gear | Stainless steel |  |
| 34 | Rail | Hard steel wire material |  |

## Series LEMC

Step Motor (Servo/24 VDC)

Dimensions
Size 25
Refer to page 538 and after for dimensions of the controllers.
Top mounting

## LEMC25T- $\square$ - $\square \square \square \square \square$



Note 1) [ ] for when the direction of return to origin has changed. (When the LECP1, LECP6 or LECPMJ is used.)
Note 2) Origin for when the LECP2 is used. The movable stroke is "Stroke +6 mm ".

## Top mounting

## With lock

LEMC25T- $\square \mathrm{B}-\square \square \square \square$


## Bottom mounting

## LEMC25UT- $\square-\square \square \square \square$



## Bottom mounting <br> With lock <br> LEMC25UT- $\square \mathrm{B}-\square \square \square \square$



Table details


Dimensions Size 25
Refer to page 538 and after for dimensions of the controllers．
Symmetric／Top mounting
LEMC25LT－$\square-\square \square \square \square \square$


Note 1）［ ］for when the direction of return to origin has changed．（When the LECP1，LECP6 or LECPMJ is used．）
Note 2）Origin for when the LECP2 is used．The movable stroke is＂Stroke +6 mm ＂．

Top mounting
With lock
LEMC25LT－$\square \mathrm{B}-\square \square \square \square$

Bottom mounting
With lock
LEMC25LUT－$\square$ B－$\square \square \square \square \square$

Table details



Bottom mounting
LEMC25LUT－$\square-\square \square \square \square \square$


## Series LEMC

Step Motor (Servo/24 VDC)

Dimensions

## Size 32

Refer to page 538 and after for dimensions of the controllers.
Top mounting



Note 1) [ ] for when the direction of return to origin has changed. (When the LECP1, LECP6 or LECPMJ is used.)
Note 2) Origin for when the LECP2 is used. The movable stroke is "Stroke +6 mm ".

Top mounting
With lock
LEMC32T- $\square \mathrm{B}-\square \square \square \square$


Bottom mounting LEMC32UT- $\square-\square \square \square \square$


Bottom mounting

## With lock

LEMC32UT- $\square \mathrm{B}-\square \square \square \square \square$


Table details


## Dimensions Size 32

Refer to page 538 and after for dimensions of the controllers．
Symmetric／Top mounting
LEMC32LT－$\square-\square \square \square \square \square$


Note 1）［ ］for when the direction of return to origin has changed．（When the LECP1，LECP6 or LECPMJ is used．）
Note 2）Origin for when the LECP2 is used．The movable stroke is＂Stroke +6 mm ＂．

Top mounting
With lock
LEMC32LT－$\square \mathrm{B}-\square \square \square \square$


Bottom mounting
LEMC32LUT－$\square-\square \square \square \square$


Bottom mounting
With lock
LEMC32LUT－$\square B-\square \square \square \square$


Table details


## Series LEMC

Step Motor (Servo/24 VDC)

## Side Support

## Side support

## MYC-S $\square$ A



| Model | Applicable actuator | A | B | C | D | E | F | G | $\varnothing \mathbf{H}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MYC-S16A | LEMC25 | 60.6 | 64.6 | 70.6 | 77.2 | 15 | 26 | 4.9 | 3.4 |
| MYC-S25A | LEMC32 | 95.9 | 97.5 | 107.9 | 115.5 | 25 | 38 | 6.4 | 4.5 |

* A set of side supports consists of a left support and a right support.


## Guide for Side Support Application

When using actuator with longer stroke, implement intermediate support to prevent frame deflection or deflection caused by vibration or external impacts. The spacing (L) of the intermediate supports must be no more than the values shown in the following graph.


Square nuts on the bottom



# Electric Actuator/Low Profile Slider Type Linear Guide Single Axis TypelDouble AxisType ( $\in \mathrm{CHN}_{\mathrm{cs}}$ Series LEMH/HT LemHLLEMHT25, 32 <br> RoHS 

## $\triangle$ Caution

How to Order

| New Series | LEM $\square 25$ | ${ }_{\text {Series }}$ | E-MYप16 |
| :---: | :---: | :---: | :---: |
| New LEM | LEM $\square 32$ | E-MY | E-MY $\square 25$ |



* Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.


## $\triangle$ Caution

[CE-compliant products]
(1) EMC compliance was tested by combining the electric actuator LEM series and the controller LEC series.
The EMC depends on the configuration of the customer's control panel and the relationship with other electrical equipment and wiring. Therefore, conformity to the EMC directive cannot be certified for SMC components incorporated into the customer's equipment under actual operating conditions. As a result, it is necessary for the customer to verify conformity to the EMC directive for the machinery and equipment as a whole.
(2) CC-Link direct input type (LECPMJ) is not CE-compliant.
[UL-compliant products]
When conformity to UL is required, the electric actuator and controller
should be used with a UL1310 Class 2 power supply.
Refer to pages 202 and 203 for auto switches.

The actuator and controller are sold as a package. (They can be ordered separately.)
Confirm that the combination of the controller and the actuator is correct.
<Check the following before use.>
(1) Check the actuator label for model number.

This matches the controller.
(2) Check Parallel I/O configuration matches (NPN or PNP).


Controller


Actuator cable type

| Nil | Without cable |
| :---: | :---: |
| $\mathbf{S}$ | Standard cable＊ |
| $\mathbf{R}$ | Robotic cable（Flexible cable） |

＊The standard cable should be used on fixed parts．For using on moving parts，select the robotic cable．

I／O cable length＊1，Communication plug

| Nil | Without cable（Without communication plug connector）＊2 |
| :---: | :---: |
| $\mathbf{1}$ | 1.5 m |
| $\mathbf{3}$ | 3 m |
| $\mathbf{5}$ | 5 m |
| $\mathbf{S}$ | Straight type communication plug connector＊2 |
| $\mathbf{T}$ | T－branch type communication plug connector＊2 |

（10）Controller mounting

| Nil | Screw mounting |
| :---: | :---: |
| $\mathbf{D}$ | DIN rail mounting＊ |

＊DIN rail is not included．Order it separately．

8 Controller type

| Nil | Without controller |  |
| :---: | :---: | :---: |
| 6N | LECP6 | NPN |
| 6P | （Step data input type） | PNP |
| 2N | LECP2＊ <br> $\binom{$ Programless type }{（With stroke study）} | NPN |
| 2P |  | PNP |
| 1N | LECP1 <br> （Programless type） | NPN |
| 1P |  | PNP |
| MJ | LECPMJ （CC－Link direct input type） | － |

＊Select the LECP2 when setting the stroke range using the stroke adjustment unit or an external stopper．


## Compatible Controller

|  | Programless type <br> （With stroke study） | Programless type | Step data input type | CC－Link direct <br> input type |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Type |  |  |  |  |



Speed/Acceleration (Set values for LECP//2)
Table 1 Switch and Speed ${ }^{\text {Note) }}$

| Switch no. | Speed $[\mathrm{mm} / \mathrm{s}]$ |
| :---: | :---: |
| $\mathbf{0}$ | 48 |
| $\mathbf{1}$ | 75 |
| $\mathbf{2}$ | 100 |
| $\mathbf{3}$ | 150 |
| $\mathbf{4}$ | 200 |
| $\mathbf{5}$ | 300 |
| $\mathbf{6}$ | 400 |
| $\mathbf{7}$ | 500 |
| $\mathbf{8}$ | 600 |
| $\mathbf{9}$ | 800 |
| $\mathbf{1 0}$ | 1000 |
| $\mathbf{1 1}$ | 1200 |
| $\mathbf{1 2}$ | 1400 |
| $\mathbf{1 3}$ | 1600 |
| $\mathbf{1 4}$ | 1800 |
| $\mathbf{1 5}$ | 2000 |

Table 2 Switch and Acceleration ${ }^{\text {Note) }}$

| Switch no. | Acceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right]$ |
| :---: | :---: |
| $\mathbf{0}$ | 250 |
| $\mathbf{1}$ | 500 |
| $\mathbf{2}$ | 1000 |
| $\mathbf{3}$ | 1500 |
| $\mathbf{4}$ | 2000 |
| $\mathbf{5}$ | 2500 |
| $\mathbf{6}$ | 3000 |
| $\mathbf{7}$ | 4000 |
| $\mathbf{8}$ | 5000 |
| $\mathbf{9}$ | 6000 |
| $\mathbf{1 0}$ | 7500 |
| $\mathbf{1 1}$ | 10000 |
| $\mathbf{1 2}$ | 12500 |
| $\mathbf{1 3}$ | 15000 |
| $\mathbf{1 4}$ | 17500 |
| $\mathbf{1 5}$ | 20000 |

Note) The factory default setting for the switch is No.O.

Specifications

| Step Motor (Servo/24 VDC) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Model |  |  | LEMH25/LEMHT25 | LEMH32/LEMHT32 |
| Stroke [mm] Note 1) |  |  | $\begin{gathered} 50,100,150,200,250 \\ 300,350,400,450 \\ 500,550,600,(700) \\ (800),(900),(1000) \end{gathered}$ | $\begin{gathered} 50,100,150,200,250,300,350 \\ 400,450,500,550,600,(700) \\ (800),(900),(1000),(1100) \\ (1200),(1300),(1400),(1500) \end{gathered}$ |
| 艺 | Work load [kg] Note 2) | Horizontal | 10 | 20 |
|  | Speed [mm/s] Note 2) |  | 48 to 2000 (Refer to Table 1 for set values when LECP1 or 2 is selected.) |  |
|  | Max. acceleration/deceleration [mm/s²] Note 9) |  | 20000 (Depends on the work load.)(Refer to Table 2 for set values when LECP1 or 2 is selected.) |  |
|  | Positioning repeatability [mm] |  | $\pm 0.08$ |  |
|  | Lost motion [mm] Note 10) |  | 0.1 or less |  |
|  | Lead [mm] |  | 48 |  |
|  | Actuation type |  | Belt |  |
|  | Guide type |  | Linear guide |  |
|  | Operating temperature range [ ${ }^{\circ} \mathrm{C}$ ] |  | 5 to 40 |  |
|  | Operating humidity range [\%RH] |  | 90 or less (No condensation) |  |
|  | Allowable external force [ N ] Note 8) |  | 10 | 20 |
|  | Motor size |  | $\square 56.4$ |  |
|  | Motor type |  | Step motor (Servo/24 VDC) |  |
|  | Encoder |  | Incremental A/B phase (800 pulse/rotation) |  |
|  | Rated voltage [V] |  | 24 VDC $\pm 10 \%$ |  |
|  | Power consumption [W] ${ }^{\text {Note 3) }}$ |  | 50 | 52 |
|  | Standby power consumption when operating [W] ${ }^{\text {Nobe 4) }}$ |  | 44 | 44 |
|  | Max. instantaneous power consumption [W] ${ }^{\text {Note } 5)}$ |  | 123 | 127 |
|  | Type Note 6) |  | Non-magnetizing lock |  |
|  | Holding force [N] |  | 36 |  |
|  | Power consumption [W] Note 7) |  | 5 |  |
|  | Rated voltage [V] |  | 24 VDC $\pm 10 \%$ |  |

Note 1) Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.
Note 2) Speed changes according to the work load.
Check "Speed-Work Load Graph (Guide)" on page 163.
The work load changes according to the work load mounting condition. Check "Dynamic Allowable Moment" on pages 166 and 167.
Furthermore, if the cable length exceeds 5 m , then it will decrease by up to $10 \%$ for each 5 m .
Note 3) The power consumption (including the controller) is for when the actuator is operating.
Note 4) The standby power consumption when operating (including the controller) is for when the actuator is stopped in the set position during operation.
Note 5) The maximum instantaneous power consumption (including the controller) is for when the actuator is operating. This value can be used for the selection of the power supply.
Note 6) With lock only
Note 7) For an actuator with lock, add the power consumption for the lock.
Note 8) The resistance value of the attached equipment should be within the allowable external resistance value.
Note 9) Maximum acceleration and deceleration are limited by the work load and the stroke. Refer to "Work Load-Acceleration/Deceleration Graph (Guide)" on page 164.
Note 10) A reference value for correcting an error in reciprocal operation.

## Weight

## Linear Guide Single Axis Type

| Stroke |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 600 | (700) | (800) | (900) | (1000) | (1100) | (1200) | (1300) | (1400) | (1500) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Product weight [kg] | LEMH25 | 1.91 | 2.05 | 2.18 | 2.32 | 2.46 | 2.59 | 2.73 | 2.87 | 3.00 | 3.14 | 3.28 | 3.42 | 3.69 | 3.96 | 4.24 | 4.51 | - | - | - | - | - |
|  | LEMH32 | 3.47 | 3.70 | 3.93 | 4.17 | 4.40 | 4.63 | 4.87 | 5.10 | 5.33 | 5.57 | 5.80 | 6.03 | 6.50 | 6.97 | 7.44 | 7.90 | 8.37 | 8.84 | 9.30 | 9.77 | 10.24 |
| Additional weight with lock [kg] |  |  |  |  |  |  |  |  |  |  |  | 0.60 |  |  |  |  |  |  |  |  |  |  |

## Linear Guide Double Axis Type

| Stroke |  | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 600 | (700) | (800) | (900) | (1000) | (1100) | (1200) | (1300) | (1400) | (1500) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Product | LEMHT25 | 2.40 | 2.61 | 2.82 | 3.03 | 3.24 | 3.45 | 3.66 | 3.87 | 4.08 | 4.29 | 4.50 | 4.71 | 5.13 | 5.55 | 5.97 | 6.38 | - | - | - | - | - |
| weight [kg] | LEMHT32 | 4.82 | 5.20 | 5.58 | 5.97 | 6.35 | 6.73 | 7.12 | 7.50 | 7.88 | 8.27 | 8.65 | 9.04 | 9.80 | 10.57 | 11.34 | 12.10 | 12.87 | 13.64 | 14.41 | 15.17 | 15.94 |
| Additional weight with lock [kg] |  | 0.60 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Construction

## LEMH



Motor option：With lock


Component Parts

| No． | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Body | Aluminum alloy | Anodized |
| $\mathbf{2}$ | Belt | - |  |
| 3 | L－type bracket | Aluminum alloy | Anodized |
| 4 | Belt stopper | Aluminum alloy |  |
| 5 | End block | Aluminum alloy | Anodized |
| 6 | Pulley holder | Aluminum alloy |  |
| 7 | Pulley shaft | Stainless steel | Heat treatment＋Special treatment |
| 8 | Pulley | Aluminum alloy | Anodized |
| 9 | Motor pulley | Aluminum alloy | Anodized |
| 10 | Motor mount | Aluminum die－casted | Painting |
| 11 | Motor cover | Synthetic resin |  |
| 12 | Grommet | Synthetic resin |  |
| 13 | Motor | - |  |
| 14 | Motor end block | Aluminum alloy | Anodized |
| 15 | Bearing | - |  |

Component Parts

| No． | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1 6}$ | Bearing | - |  |
| $\mathbf{1 7}$ | Tension plate | Aluminum alloy | Anodized |
| $\mathbf{1 8}$ | Hexagon bolt | Carbon steel | Chromated |
| $\mathbf{1 9}$ | Motor cover for lock | Aluminum alloy | Anodized <br> Only＂with lock＂ |
| 20 | Grommet | CR | Chloroprene rubber <br> Only＂with lock＂ |
| 21 | Guide unit body | Aluminum alloy | Anodized |
| 22 | Slide table | Aluminum alloy | Anodized |
| 23 | Guide | - |  |
| 24 | End plate | Aluminum alloy | Anodized |
| 25 | Stopper | Carbon steel | Nickel plating |
| 26 | Stroke adjuster | Aluminum alloy | Anodized |
| 27 | Magnet | - |  |

## Series LEMHT

Step Motor (Servo/24 VDC)

Construction

## LEMHT



Motor option: With lock


Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1}$ | Body | Aluminum alloy | Anodized |
| $\mathbf{2}$ | Belt | - |  |
| $\mathbf{3}$ | L-type bracket | Aluminum alloy | Anodized |
| 4 | Belt stopper | Aluminum alloy |  |
| 5 | End block | Aluminum alloy | Anodized |
| 6 | Pulley holder | Aluminum alloy |  |
| $\mathbf{7}$ | Pulley shaft | Stainless steel | Heat treatment + Special treatment |
| $\mathbf{8}$ | Pulley | Aluminum alloy | Anodized |
| 9 | Motor pulley | Aluminum alloy | Anodized |
| $\mathbf{1 0}$ | Motor mount | Aluminum die-casted | Painting |
| $\mathbf{1 1}$ | Motor cover | Synthetic resin |  |
| $\mathbf{1 2}$ | Grommet | Synthetic resin |  |
| $\mathbf{1 3}$ | Motor | - |  |
| $\mathbf{1 4}$ | Motor end block | Aluminum alloy | Anodized |
| $\mathbf{1 5}$ | Bearing | - |  |

Component Parts

| No. | Description | Material | Note |
| :---: | :--- | :---: | :---: |
| $\mathbf{1 6}$ | Bearing | - |  |
| $\mathbf{1 7}$ | Tension plate | Aluminum alloy | Anodized |
| $\mathbf{1 8}$ | Hexagon bolt | Carbon steel | Chromated |
| 19 | Motor cover for lock | Aluminum alloy | Anodized <br> Only "with lock" |
| 20 | Grommet | CR | Chloroprene rubber <br> Only "with lock" |
| $\mathbf{2 1}$ | Guide unit body | Aluminum alloy | Anodized |
| $\mathbf{2 2}$ | Slide table | Aluminum alloy | Anodized |
| 23 | Guide | - |  |
| 24 | End plate | Aluminum alloy | Anodized |
| 25 | Stopper | Carbon steel | Nickel plating |
| 26 | Stroke adjuster | Aluminum alloy | Anodized |
| 27 | Magnet | - |  |

Dimensions：Linear Guide Single Axis Type

## Size 25

Refer to page 538 and after for dimensions of the controllers．
Top mounting
LEMH25T－$\square-\square \square \square \square \square$



Note 2）Origin for when the LECP2 is used．The movable stroke is＂Stroke +6 mm ＂．

Top mounting
With lock
LEMH25T－$\square$ B－$\square \square \square \square \square$


## Bottom mounting

LEMH25UT－$\square-\square \square \square \square$


Bottom mounting
With lock
LEMH25UT－$\square$ B－$\square \square \square \square \square$


Table details


## Series LEMH

Step Motor (Servo/24 VDC)

Dimensions: Linear Guide Single Axis Type
Size 25
Refer to page 538 and after for dimensions of the controllers.

## Symmetric/Top mounting

LEMH25LT- $\square-\square \square \square \square \square$


Note 1) [ ] for when the direction of return to origin has changed. (When the LECP1, LECP6 or LECPMJ is used.) Note 2) Origin for when the LECP2 is used. The movable stroke is "Stroke +6 mm ".

## Top mounting

With lock
LEMH25LT- $\square$ B- $\square \square \square \square \square$


Bottom mounting
LEMH25LUT- $\square-\square \square \square \square$


## Bottom mounting

With lock
LEMH25LUT- $\square$ B- $\square \square \square \square \square$


Table details


## Size 32

Refer to page 538 and after for dimensions of the controllers．
Top mounting
LEMH32T－$\square-\square \square \square \square$



Note 1）［ ］for when the direction of return to origin has changed．（When the LECP1，LECP6 or LECPMJ is used．）
Note 2）Origin for when the LECP2 is used．The movable stroke is＂Stroke +6 mm ＂．

Top mounting
With lock
LEMH32T－$\square$ B－$\square \square \square \square \square$


Bottom mounting
LEMH32UT－$\square-\square \square \square \square \square$


Bottom mounting
With lock
LEMH32UT－$\square$ B－$\square \square \square \square \square$


Table details


## Series LEMH

Step Motor (Servo/24 VDC)

## Dimensions: Linear Guide Single Axis Type

Size 32
Refer to page 538 and after for dimensions of the controllers.

## Symmetric/Top mounting





Note 1) [ ] for when the direction of return to origin has changed. (When the LECP1, LECP6 or LECPMJ is used.)
Note 2) Origin for when the LECP2 is used. The movable stroke is "Stroke +6 mm ".

## Top mounting

With lock
LEMH32LT- $\square$ B- $\square \square \square \square$


Bottom mounting
LEMH32LUT-■-■ $\square \square \square$


Bottom mounting

## With lock

LEMH32LUT- $\square \mathrm{B}-\square \square \square \square$


Table details


Top mounting
LEMHT25T－$\square-\square \square \square \square$


Note 1）［ ］for when the direction of return to origin has changed．（When the LECP1，LECP6 or LECPMJ is used．）
Note 2）Origin for when the LECP2 is used．The movable stroke is＂Stroke +6 mm ＂．

## Top mounting

With lock
LEMHT25T－$\square \mathrm{B}-\square \square \square \square$


Bottom mounting
LEMHT25UT－$\square-\square \square \square \square \square$


Bottom mounting

## With lock

LEMHT25UT－$\square$ B－$\square \square \square \square$


Table details


## Series LEMHT

Dimensions: Linear Guide Double Axis Type
Size 25
Refer to page 538 and after for dimensions of the controllers.

## Symmetric/Top mounting

LEMHT25LT- $\square$ - $\square \square \square \square \square$
 Note 2) Origin for when the LECP2 is used. The movable stroke is "Stroke +6 mm ".

Top mounting
With lock
LEMHT25LT- $\square$ B- $\square \square \square \square \square$


Bottom mounting
LEMHT25LUT- $\square-\square \square \square \square$


Bottom mounting

## With lock

LEMHT25LUT- $\square$ B- $\square \square \square \square \square$


Table details


Top mounting
LEMHT32T－$\square$－$\square \square \square \square \square$

## I

B


A－A


Note 1）［ ］for when the direction of return to origin has changed．（When the LECP1，LECP6 or LECPMJ is used．） Note 2）Origin for when the LECP2 is used．The movable stroke is＂Stroke +6 mm ＂．

Top mounting
With lock
LEMHT32T－$\square \mathrm{B}-\square \square \square \square \square$

Bottom mounting
LEMHT32UT－$\square-\square \square \square \square \square$


Bottom mounting
With lock
LEMHT32UT－$\square$ B－$\square \square \square \square$


Table details


## Series LEMHT

## Dimensions: Linear Guide Double Axis Type <br> Size 32

Refer to page 538 and after for dimensions of the controllers.

## Symmetric/Top mounting



Note 1) [ ] for when the direction of return to origin has changed. (When the LECP1, LECP6 or LECPMJ is used.)
Note 2) Origin for when the LECP2 is used. The movable stroke is "Stroke +6 mm ".

## Top mounting

With lock
LEMHT32LT- $\square$ B- $\square \square \square \square \square$


## Bottom mounting

LEMHT32LUT- $-\square \square \square$


## Bottom mounting

With lock
LEMHT32LUT- $\square$ B- $\square \square \square \square \square$


Table details


## Guide for Intermediate Support

When using actuator with longer stroke，implement intermediate support to prevent frame deflection or deflection caused by vibration or external impacts．The spacing（L）of the intermediate supports must be no more than the values shown in the following graph．



## $\triangle$ Caution

1．If the actuator mounting surfaces are not measured accurately，using the intermediate support may cause poor operation．Make sure to level the mounting surface when mounting the actuator．For long stroke operation involving overhang of workpiece，implement intermediate support as recommended even if the support spacing is within the allowable limits shown in the graph．Use the square nuts which are on the bottom of the actuator for the intermediate support．


Auto Switch Mounting

## Auto Switch Proper Mounting Position at Stroke End Detection



## For LEMC/H/HT

The proper mounting position at stroke end detection (A dimension) changes depending on the motor mounting position (standard or symmetric).

| $\begin{aligned} & -M 9, ~ D . \\ & -M 9 \square \mathbf{V} \end{aligned}$ | $19 \square \mathrm{~V}$ D-M9 |  | [mm] |
| :---: | :---: | :---: | :---: |
| Model | Nominal size | A | Operating range |
| LEMB | 25 | 40 | 5.5 |
| LEMC |  | 8 | 3.5 |
| LEMH |  | 10 | 6 |
| LEMHT |  | 34 | 7 |
| LEMB | 32 | 40 | 5.5 |
| LEMC |  | 8.4 | 4 |
| LEMH |  |  | 5.5 |
| LEMHT |  |  | 5.5 |

Note) The operating range is a guideline including hysteresis, not meant to be guaranteed. There may be large variations (as much as $\pm 30 \%$ ) depending on the ambient environment.

## Motor mounting position: Standard



Motor mounting position: Symmetric


## Auto Switch Mounting

## Series LEMB

When mounting an auto switch, first hold the switch spacer with your fingers and push it into the slot. Confirm that it is aligned evenly within the slot and adjust the position if necessary. Then, insert the auto switch into the slot and slide it into the spacer.
After establishing the mounting position, use a flat head watchmaker's screwdriver to tighten the included auto switch mounting screw.


Note) When tightening the auto switch mounting screw, use a watchmaker's screwdriver with a handle of approximately 5 to 6 mm in diameter. Also, tighten with a torque of about 0.05 to $0.1 \mathrm{~N} \cdot \mathrm{~m}$. As a guide, turn about $90^{\circ}$ past the point at which tightening can first be felt.

## Switch Spacer Part No.

| Applicable bore size [mm] | $\mathbf{2 5}$ | $\mathbf{3 2}$ |
| :---: | :---: | :---: |
| Switch spacer part no. | BMY3-016 |  |

## Series LEMC/H/HT

When mounting an auto switch, insert the auto switch into the actuator's auto switch mounting slot as shown below. Once in the mounting position, use a flat head watchmaker's screwdriver to tighten the included auto switch mounting screw.


Note) When tightening the auto switch mounting screw (included with auto switch), use a watchmaker's screwdriver with a handle of approximately 5 to 6 mm in diameter.
Tightening Torque for Auto Switch Mounting Screw [N.m]

| Auto switch model | Tightening torque |
| :---: | :---: |
| D-M9 $\square(\mathbf{V})$ | 0.10 to 0.15 |
| D-M9 $\square \mathbf{W}(\mathbf{V})$ |  |

## Solid State Auto Switch Direct Mounting Style D－M9N（V）／D－M9P（V）／D－M9B（V）C €

## Grommet

－2－wire load current is reduced （ 2.5 to 40 mA ）．
－Flexibility is 1.5 times greater than the former model（SMC comparison）．
－Using flexible cable as standard．


## ©Caution

## Precautions

Fix the auto switch with the existing screw installed on the auto switch body．The auto switch may be damaged if a screw other than the one supplied is used．

Auto Switch Specifications

Refer to SMC website for the details about products conforming to the international standards．

| PLC：Programmable Logic Controller |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D－M9 $\square$ ，D－M9 $\square$ V（With indicator light） |  |  |  |  |  |  |
| Auto switch model | D－M9N | D－M9NV | D－M9P | D－M9PV | D－M9B | D－M9BV |
| Electrical entry | In－line | Perpendicular | In－line | Perpendicular | In－line | Perpendicular |
| Wiring type | 3－wire |  |  |  | 2－wire |  |
| Output type | NPN |  | PNP |  | － |  |
| Applicable load | IC circuit，Relay，PLC |  |  |  | 24 VDC relay，PLC |  |
| Power supply voltage | 5，12， 24 VDC （ 4.5 to 28 V ） |  |  |  | － |  |
| Current consumption | 10 mA or less |  |  |  | － |  |
| Load voltage | 28 VDC or less |  | － |  | 24 VDC（10 to 28 VDC） |  |
| Load current | 40 mA or less |  |  |  | 2.5 to 40 mA |  |
| Internal voltage drop | 0.8 V or less at 10 mA （ 2 V or less at 40 mA ） |  |  |  | 4 V or less |  |
| Leakage current | $100 \mu \mathrm{~A}$ or less at 24 VDC |  |  |  | 0.8 mA or less |  |
| Indicator light | Red LED lights up when turned ON． |  |  |  |  |  |
| Standards | CE marking，RoHS |  |  |  |  |  |

Oilproof Heavy－duty Lead Wire Specifications

| Auto switch model |  | D－M9N $\square$ | D－M9P $\square$ | D－M9B $\square$ |
| :---: | :---: | :---: | :---: | :---: |
| Sheath | Outside diameter［mm］ | $2.7 \times 3.2$（ellipse） |  |  |
| Insulator | Number of cores | 3 cores | ／Black） | 2 cores（Brown／Blue） |
|  | Outside diameter［mm］ | $\varnothing 0.9$ |  |  |
| Conductor | Effective area［ $\mathrm{mm}^{2}$ ］ | 0.15 |  |  |
|  | Strand diameter［mm］ | $\varnothing 0.05$ |  |  |
| Minimum bending radius［mm］（Reference value） |  | 20 |  |  |

Note 1）Refer to the Best Pneumatics No． 2 for solid state auto switch common specifications． Note 2）Refer to the Best Pneumatics No． 2 for lead wire lengths．

Weight
［g］

| Auto switch model |  | D－M9N（V） | D－M9P（V） | D－M9B（V） |
| :---: | :---: | :---: | :---: | :---: |
| Lead wire length | $0.5 \mathrm{~m}(\mathbf{N i l})$ | 8 | 7 |  |
|  | $1 \mathrm{~m}(\mathbf{M})$ | 14 | 13 |  |
|  | $3 \mathrm{~m}(\mathbf{L})$ | 41 | 38 |  |
|  | $5 \mathrm{~m}(\mathbf{Z})$ | 68 | 63 |  |


\section*{| 吴 |
| :--- |
| 音 |}



Dimensions
［mm］

## D－M9 $\square$



## 2-Color Indication Solid State Auto Switch Direct Mounting Style

 D-M9NW(V)/D-MMPW(V)/D-M9BW(V) C $\epsilon$
## Grommet

- 2-wire load current is reduced ( 2.5 to 40 mA ).
- Flexibility is 1.5 times greater than the former model (SMC comparison).
- Using flexible cable as standard.
- The optimum operating range can be determined by the color of the light. (Red $\rightarrow$ Green $\leftarrow$ Red)


## ©Caution

## Precautions

Fix the auto switch with the existing screw installed on the auto switch body. The auto switch may be damaged if a screw other than the one supplied is used.

Auto Switch Specifications
Refer to SMC website for the details about products conforming to the international standards.

PLC: Programmable Logic Controller

| D-M9 $\square$ W, D-M9 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

Oilproof Flexible Heavy-duty Lead Wire Specifications

| Auto switch model |  | D-M9NW $\square$ | D-M9PW $\square$ | D-M9BW $\square$ |
| :---: | :---: | :---: | :---: | :---: |
| Sheath | Outside diameter [mm] | $2.7 \times 3.2$ (ellipse) |  |  |
| Insulator | Number of cores | 3 cores (Bros | ue/Black) | 2 cores (Brown/Blue) |
|  | Outside diameter [mm] | $\varnothing 0.9$ |  |  |
| Conductor | Effective area [ $\mathrm{mm}^{2}$ ] | 0.15 |  |  |
|  | Strand diameter [ mm ] | $\varnothing 0.05$ |  |  |
| Minimum bending radius [mm] (Reference value) |  | 20 |  |  |

Note 1) Refer to the Best Pneumatics No. 2 for solid state auto switch common specifications.
Note 2) Refer to the Best Pneumatics No. 2 for lead wire lengths.

Weight

| Auto switch model |  |  | D-M9NW(V) | D-M9PW(V) |
| :---: | :---: | :---: | :---: | :---: |
| Lead wire length | $0.5 \mathrm{~m}(\mathbf{N i l})$ | 8 | 7 |  |
|  | $1 \mathrm{~m}(\mathbf{M})$ | 14 | 13 |  |
|  | $3 \mathrm{~m}(\mathbf{L})$ | 41 | 38 |  |
|  | $5 \mathrm{~m}(\mathbf{Z})$ | 68 | 63 |  |

Dimensions
D-M9 $\square \mathbf{W}$


## Electric Actuator

Design

## $\triangle$ Caution

1．Do not apply a load in excess of the specification limits． Select a suitable actuator by work load and allowable moment．If the product is used outside of the specification limits，the eccentric load applied to the guide will be excessive and have adverse ef－ fects such as creating play on the guide，degrading accuracy and shortening the life of the product．
2．Do not increase the speed in excess of the specifica－ tion limits．
Select a suitable actuator by the relationship between the＂speed－ work load＂，and the＂work load－acceleration／deceleration＂．If the product is used outside of the specification limits，it will have ad－ verse effects such as creating noise，degrading accuracy and shortening the life of the product．
3．Do not use the product in applications where exces－ sive external force or impact force is applied to it．
This can cause a failure．
4．When external force is applied to the table，it is neces－ sary to add external force to the work load as the total carried load for the sizing．
When a cable duct or flexible moving tube is attached in parallel to the actuator，it is necessary to add the friction to the work load as the total carried load for the sizing，too．
5．The resistance value of the attached equipment should be within the allowable external resistance value．

## Handling

## $\triangle$ Caution

1．INP output signal（LECP6）
1）Positioning operation
When the product comes within the set range by step data［In positon］，the INP output signal will turn on．
Initial value：Set to［1］or higher．
2．Never hit at the stroke end except during return to origin． （Except when the LECP2 controller is used．）
Internal stopper can be broken．


3．The moving force should be the initial value．
If the moving force is set below the initial value，it may cause an alarm．
4．The actual speed of this actuator is affected by the work load．
Check the model selection section of the catalog．
5．Do not apply a load，impact or resistance in addition to the transferred load during return to origin．
Additional force will cause the displacement of the origin position since it is based on detected motor torque．
6．Do not dent，scratch or cause other damage to the body and table mounting surfaces．
This may cause unevenness in the mounting surface，play in the guide or an increase in the sliding resistance．
Handling 7．Do not apply strong impact
while mounting a workpiece．
If an external force over the allowable moment is applied，it may cause play in the guide or an increase in the sliding resistance．
8．Provide a flat surface for installing the actuator．The degree of surface flatness should be determined by the machine precision requirement，or its corresponding precision． The degree of surface flatness for installing the actuator should be within $0.1 \mathrm{~mm} / 500 \mathrm{~mm}$ ．The degree of surface flatness for mounting a workpiece should be within 0.05 mm （LEMB）， 0.02 mm （LEMC／H／HT）．
9．When mounting the actuator，keep a 40 mm or longer diameter for bends in the cable．

10．Do not hit the table with the workpiece in the position－ ing operation and positioning range．
11．When mounting the product，use screws with adequate length and tighten them with adequate torque．
Tightening the screws with a higher torque than the maximum may cause a malfunction，whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position．

| Body fixed | LEMB typ <br> LEMC／H／H <br> ${ }_{\varnothing}{ }^{\boldsymbol{A}}$ $\qquad$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Model | Screw size | Maximum tightering torquel［ $\mathrm{N} \cdot \mathrm{m}$ ］ | $\varnothing \mathbf{A}$［mm］ | L ［mm］ |
| LEMB $\square$ | M5 | 3 | 5.5 | 24.5 |
| LEMC25 LEMH25 | M3 | 0.6 | 3.4 | 23.7 |
| $\begin{aligned} & \text { LEMC32 } \\ & \text { LEMH32 } \end{aligned}$ | M5 | 3 | 5.5 | 30.1 |
| LEMHT25 | M5 | 3 | 5.5 | 21.6 |
| LEMHT32 | M8 | 12.5 | 9 | 26.9 |

Workpiece fixed


LEMC／H／HT type


| Workpiece | xed |  | LEMC／H／HT type |
| :---: | :---: | :---: | :---: |
| Model | Screw size | Maximum tightening torque［ $\mathrm{N} \cdot \mathrm{m}$ ］ | m］L $\mathbf{L}$（Maximum screw－in depth）［mm］ |
| LEMB $\square$ | M5 $\times 0.8$ | 3 | － 8 |
| LEMC25 <br> LEMH25 | M4 x 0.5 | 1.5 | 7 |
| LEMC32 <br> LEMH32 | M5 x 0.8 | 3 | 9 |
| LEMHT25 | M5 $\times 0.8$ | 3 | 9 |
| LEMHT32 | M $8 \times 1.25$ | 12.5 | 12 |

To prevent the workpiece retaining screws from touching the body，use screws that are 0.5 mm or shorter than the maximum screw－in depth．If long screws are used，they can touch the body and cause a malfunction．

## Electric Actuator

## Handling

## © Caution

12. Do not operate by fixing the table and moving the actuator body.
13. The belt drive actuator cannot be used vertically for applications.
14. Check the specifications for the minimum speed of each actuator.
Otherwise, unexpected malfunctions, such as knocking, may occur.
15. In the case of the belt drive actuator, vibration may occur during operation at speeds within the actuator specifications, this could be caused by the operating conditions. Change the speed setting to a speed that does not cause vibration.
16. High frequency noise will be generated during deceleration depending on the operating conditions. This is a noise generated during processing the regenerative power. It is not a failure.
17. When using actuator with longer stroke, implement an intermediate support.
When using actuator with longer stroke, implement intermediate support to prevent frame deflection or deflection caused by vibration or external impacts.
18. Attaching and detaching the drive unit

To remove the drive unit, remove the 6 drive unit retaining cap screws and remove the slider from the guide unit. To install the drive unit, insert its slider into the slide table on the guide unit and tighten 2 screws of connection part, and then equally tighten the 4 retaining cap screws. Tighten the retaining cap screws securely because if they become loose, problems may occur such as damage, malfunction.


## Handling

## $\triangle$ Caution

19. Workpiece mounting

When mounting a magnetic workpiece, keep a clearance of 5 mm or greater between the auto switch and the workpiece. Otherwise, the magnetic force within the actuator may be lost, resulting in malfunction of the auto switch.


## Maintenance

## © Warning

Maintenance frequency
Perform maintenance according to the table below.

| Frequency | Appearance check | Internal check | Belt check |
| :--- | :---: | :---: | :---: |
| Inspection before <br> daily operation | $\bigcirc$ | - | - |
| Inspection every <br> 6 months $/ 1000 \mathrm{~km} /$ <br> 5 million cycles * | $\bigcirc$ | $\bigcirc$ | $\bigcirc$ |

* Select whichever comes first.
- Items for visual appearance check

1. Loose set screws, Abnormal dirt
2. Check of flaw and cable joint
3. Vibration, Noise

- Items for internal check

1. Lubricant condition on moving parts.
2. Loose or mechanical play in fixed parts or fixing screws.

## - Items for belt check

Stop operation immediately and replace the belt when belt appear to be below. Further, ensure your operating environment and conditions satisfy the requirements specified for the product.
a. Tooth shape canvas is worn out.

Canvas fiber becomes fuzzy. Rubber is removed and the fiber becomes whitish. Lines of fibers become unclear.
b. Peeling off or wearing of the side of the belt

Belt corner becomes round and frayed thread sticks out.
c. Belt partially cut

Belt is partially cut. Foreign matter caught in teeth other than cut part causes flaw.
d. Vertical line of belt teeth

Flaw which is made when the belt runs on the flange.
e. Rubber back of the belt is softened and sticky.
f. Crack on the back of the belt


[^0]:    ＊Strokes shown in（ ）are produced upon receipt of order．Please consult with SMC as all non－standard and non－made－to－order strokes are produced as special orders． ＊＊（ ）：Using an external guide（Provided by customer）．

[^1]:    * The following graph shows the values when moving force is $100 \%$.

