# Card Motor Series LAT3 

The transportation, pushing and length measurement systems have been miniaturized through the use of a linear motor.


## Compact and lightweight

| Model | W (mm) | L (mm) | H (mm) | Weight (g) |
| :---: | :---: | :---: | :---: | :---: |
| LAT3口-10 | 50 | 60 | 9 | 130 |
| LAT3■-20 |  | 90 |  | 190 |
| LAT3■-30 |  | 120 |  | 250 |



Workpiece Mounting
The table is provided with dowel pin holes for locating the workpiece as standard equipment.

Workpiece mounting
$\frac{\text { Workpiece mounti }}{\text { (Tapped holes) }}$
Two dowel pin holes


## Start－up time is reduced greatly with a system that is ready－to－use and easy to set up．

The functions described below makes the start－up quick and easy．

## OParallel input／output status check function

The status of the parallel input signals can be checked，or the parallel output signals can be activated manually using a PC．


## OBuilt－in operation patterns

## Positioning operation（Absolute •Relative）



Absolute：The table moves to the target position with reference to the origin position and stops there．
Relative ：The table moves to the target position with reference to the current position and stops there．

## Pushing operation（Absolute •Relative）



The table moves to a position close to the target posi－ tion，decelerates to low speed and starts pushing after the table has come in contact with the workpiece．

## OCycle time entry method

Only target position and positioning time need to be entered， so there is no need to enter the speed，acceleration and decel－ eration．
（Using the speed entry method allows you to enter the speed， acceleration and deceleration．）

## OStep data input

The Card Motor operation type and condition are preset in the step data．The Card Motor is operated according to the con－ tents of the selected preset step data number．


## Function for measuring and differentiation of workpieces

The size of the workpiece can be measured based on the table stopping position by driving the table until it comes into contact with the workpiece．
The workpieces can be differentiated or checked for quality using parallel output signals that correspond to preset table position ranges． Furthermore，using the multi－counter （optional accessory：refer to page 895） makes it possible to display the table position and output up to 31 preset points．


## Application Examples of Card Motor

The applications described below are just a few examples.
When using the Card Motor, select an appropriate model by carefully checking the specifications.

## Examples of positioning applications

Sensor head movement and positioning


Component supply to tape


Component movement and positioning


Component separation (escapement)


Electronic component pick and place


Workpiece alignment


## Examples of measurement applications

Measurement of workpiece height


Measurement of cable outside diameter


Measurement of glass substrate thickness (multiple points)


Measurement of tape thickness


## Examples of high frequency actuation

Alignment of components on pallet by vibration
Distribution of workpieces


Examples of pushing applications

Pushing of workpieces (soft touch)


Tape alignment


Positioning of workpieces


Cutting of resin mold component runners



$\frac{\text { ! }}{\frac{1}{5}}$

## Series LAT3 <br> Model Selection 1

Selection Procedure for Positioning Operation (Refer to pages 867 and 868 for Fig.1, 2, 3, 4, 5 and Table 1, 2, 3.)
Selection Procedure
Formula/Data
Selection Example

## Operating conditions

List the operating conditions with consideration to the mounting orientation and shape of the workpiece.

Select an actuator temporarily.
Select a model temporarily based on the required positioning repeatability and stroke.

Check the load mass and load factor.
Find the allowable load mass Wmax [g] from the graph.
*Confirm that the applied load mass W [g] does not exceed the allowable load mass.

From Table 1, find the correction values for the distances to the moment center. Calculate the static moment $\mathrm{M}[\mathrm{N} \cdot \mathrm{m}]$.
From Table 3, find the allowable moment Mmax [N.m]. Calculate the load factor $\alpha_{n}$ for the static moments.
*Confirm that the total sum of the guide load factors for the static moments does not exceed 1.

4 Check the positioning time.

Find the shortest positioning time Tmin [ms] from the graph.
*Confirm that the positioning time Tp [ms] is longer than the shortest positioning time.

- Stroke St [mm]
- Load mass W [g]
- Mounting orientation
- Mounting angle $\theta\left[{ }^{\circ}\right]$ Fig. 2
- Amount of overhang Ln [mm] Fig. 1
- Correction values for the distances to the moment center An [mm]

Fig. 1 Table 1

- Positioning time Tp [ms]
- Positioning repeatability [ $\mu \mathrm{m}$ ]
15 mm
200 g
Horizontal table mounting
$\theta=0^{\circ}$
$\mathrm{L} 1=-10 \mathrm{~mm}$
$\mathrm{~L} 2=30 \mathrm{~mm}$
$\mathrm{~L} 3=35 \mathrm{~mm}$
$\mathrm{Tp}=200 \mathrm{~ms}$
$100 \mu \mathrm{~m}$

Table 2 From Table 2, temporarily select the LAT3-20, which satisfies the positioning repeatability $100 \mu \mathrm{~m}$ and the minimum stroke that satisfies the stroke $\mathrm{St}=15$

| Model | LAT3-10 | LAT3F-10 | LAT3-20 | LAT3F-20 | LAT3-30 | LAT3F-30 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Stroke [mm] | 10 |  | 20 |  | 30 |  |
| Positioning repeatability $[\mu \mathrm{m}]$ | $\pm 90$ | $\pm 5$ | $\pm 90$ | $\pm 5$ | $\pm 90$ | $\pm 5$ |

## Wmax Fig. 2

$\mathrm{W} \leq \mathrm{W} \max$

## An Table 1

$\mathrm{M}=\mathrm{W} / 1000 \cdot 9.8(\mathrm{Ln}+\mathrm{An}) / 1000$

## Mmax Table 3

$\alpha=M / M \max$
$\Sigma \alpha p+\alpha y+\alpha r \leq 1$

From Fig. 2: $\theta=0$, find $W \max =500$
As $\mathrm{W}=200$ < Wmax $=500$, the selected model can be used.


From Table 1, A1 = 32.5

$$
\begin{aligned}
& \text { Pitch moment } \\
& \text { From Table 3, Mpmax }
\end{aligned} \begin{aligned}
M p & =200 / 1000 \times 9.8(-10+32.5) / 1000 \\
& =0.044 \\
\alpha p & =0.044 / 0.3=0.15 \\
\text { Roll moment } & \\
M r & =200 / 1000 \times 9.8 \times 35 / 1000 \\
& =0.069 \\
\text { From Table 3, Mrmax } & =0.2 \\
\alpha r & =0.069 / 0.2 \\
& =0.35 \\
\sum \alpha \mathrm{an} & =0.15+0.35 \\
& =0.5 \leq 1, \text { thus, the selected model } \\
& \text { can be used. }
\end{aligned}
$$

## Tmin Fig. 3

$T p \geq$ Tmin

From Fig. 3: $\mathrm{St}=15$ and $\mathrm{W}=200$, find $T \min =130$ As $T p=200 \geq$ Tmin $=130$, the selected model can be used.


## Selection Procedure for Pushing Operation

## Selection Procedure

## Formula／Data

Selection Example

## Operating conditions

List the operating conditions with consideration to the mounting orientation and shape of the workpiece．
＊When operating the product in a vertical direction，consider the effect of the table weight on the Card Motor（See Table 2）and the weight of the work－ piece to find out the pushing force of the Card Motor．

Select an actuator temporarily．
Select a model temporarily based on the required meas－ uring accuracy and stroke．

## Check the load mass and moment．

Find the allowable load mass Wmax［g］from the graph．
＊Confirm that the applied load mass W［g］ does not exceed the allowable load mass．
From Table 1，find the correction values for the distances to the moment center．Calculate the static moment $\mathrm{M}[\mathrm{N} . \mathrm{m}]$ ．
From Table 3，find the allowable moment Mmax［N．m］．Calculate the load factor $\alpha_{n}$ for the static moments．
＊Confirm that the total sum of the guide load factors for the static moments does not exceed 1 ．
－Stroke St［mm］
－Load mass W［g］
－Mounting orientation
－Mounting angle $\theta\left[{ }^{\circ}\right]$
－Amount of overhang（L1，L2，L3）［mm］Fig． 1
－Correction values for the distances to the moment center An［mm］

Fig． 1 Table
－Measuring accuracy［ $\mu \mathrm{m}$ ］
－Positioning time Tp［ms］
－Pushing force F［N］
－Pushing position［mm］
－Pushing direction
－Positioning time＋Pushing time Ta［s］
－Cycle time Tb［s］
8 mm
50 g
Horizontal table mounting
$\theta=0^{\circ}$
$\mathrm{L} 1=30 \mathrm{~mm}$
$\mathrm{~L} 2=10 \mathrm{~mm}$
$\mathrm{~L} 3=0 \mathrm{~mm}$
$10 \mu \mathrm{~m}$
$\mathrm{Tp}=150 \mathrm{~ms}$
4 N
4 mm
Pushing direction away from the connector
4 s
10 s

## Table 2

| Model | LAT3－10 | LAT3F－10 | LAT3－20 | LAT3F－20 | LAT3－30 | LAT3F－30 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Stroke $[\mathrm{mm}]$ | 10 |  | 20 |  | 30 |  |
| Measuring accuracy $[\mu \mathrm{m}]$ | 30 | 1.25 | 30 | 1.25 | 30 | 1.25 |

From Table 2，temporarily select the LAT3F－10， which satisfies the measuring accuracy $10 \mu \mathrm{~m}$ and the minimum stroke that satisfies the stroke $S t=8$

Mmax Table 3
$\alpha=M / M \max$
$\Sigma \alpha p+\alpha y+\alpha r \leq 1$

From Fig．2：$\theta=0$ ，find $W \max =500$
As $\mathrm{W}=50<\mathrm{Wmax}=500$ ，the selected model can be used．

From Table 1，A1＝ 22.5

Pitch moment

$$
\begin{aligned}
M p & =50 / 1000 \times 9.8(30+22.5) / 1000 \\
& =0.026
\end{aligned}
$$

From Table 3，Mpmax $=0.2$

$$
\alpha p=0.026 / 0.2
$$

$$
=0.13
$$

$\Sigma \alpha_{n}=0.13 \leq 1$ ，thus，the selected model can be used．
（4）

## Check the positioning time．

Find the shortest positioning time Tmin［ms］from the graph． ＊Confirm that the positioning time Tp［ms］is longer than the minimum positioning time．

## Tmin Fig． 3

$T p \geq$ Tmin

From Fig．3：$S t=8$ and $W=50$ ，find $T \min =100$ As $T p=150 \geq$ Tmin $=100$ ，the selected model can be used．

## Check the pushing force．

Calculate the duty ratio［\％］．
Find the allowable thrust setting value from the graph．
From Fig．5，find the allowable pushing force Fmax［N］ generated at the required pushing position and for the allowable thrust setting value． Confirm that the pushing force $\mathrm{F}[\mathrm{N}]$ does not exceed the allowable pushing force．

## Duty ratio $=\mathrm{Ta} / \mathrm{Tb} \times 100$ Fig． 4

$\mathrm{F} \leq \mathrm{Fmax}$


Duty ratio $=4 / 10 \times 100=40 \%$
From Fig．4：LAT3 $\square-10$ and $40 \%$ duty ratio， find the allowable thrust setting value $=4.2$


From Fig．5：LAT3 $\square$－10，pushing direction away from the connector at pushing position 4 mm ，find Fmax $=4.5$
As $F=4 \leq F \max =4.5$ ，the selected model can be used．

866

# Series LAT3 <br> Model Selection 2 

## Selection

## 1 Caution

1. The temperature increase of the Card Motor varies depending on the duty ratio and the heat dissipation properties of the base it is mounted onto. If the temperature of the Card Motor becomes high, reduce the duty ratio by increasing the cycle time, or improve the heat transfer properties of the mounting base and the surroundings.
2. The pushing force generated by the Card Motor varies in relation to the thrust setting value depending on the pushing position and the pushing direction. Refer to Fig. 5 for details.

Fig. 1 Amount of Overhang: Ln [mm], Correction Value for the Distances to the Moment Center: An [mm]
Mountingorienation

Table 1Correction Value for the Distances to the Moment Center: An [mm]

| Model | A1 | A2 |
| :---: | :---: | :---: |
| LAT3 $\square$-10 | 22.5 | 2.2 |
| LAT3 $\square$-20 | 32.5 | 2.2 |
| LAT3 $\square$-30 | 42.5 | 2.2 |

Fig. 2 Allowable Load Mass: Wmax [g]


Fig. 3Shortest Positioning Time: Tmin [ms] (These are only reference values.)
LAT3- $\square$


[^0]

Operating conditions
Model: LAT3F- $\square$
Mounting orientation: Horizontal/Vertical Step data input version: Cycle time entry method (Triangular movement profile)

Fig. 4 Allowable Thrust Setting Value


Fig． 5 Pushing force：F［ N ］characteristics（Reference）


Operating conditions
Mounting orientation：Horizontal table mounting Thrust setting value：Minimum，continuous， instantaneous maximum of each model．

## LAT3 $\square$－20



Operating conditions
Mounting orientation：Horizontal table mounting Thrust setting value：Minimum，continuous， instantaneous maximum of each model．
LAT3 $\square$－20


Table start position：Retracted end（Connector side） Pushing direction：Away from the connector Pushing position：Positioning distance from the connector side，retracted end

## LAT3 $\square$－30



Table start position：Extended end（Opposite side of the connector） Pushing force direction：Toward the connector Pushing position：Positioning distance from the connector side，retracted end
LAT3 $\square$－30


Table Displacement（Reference）
Displacement through the entire stroke when a load is applied to the point indicated by the arrow

Table displacement due to pitch moment load


LAT3 $\square-10,-20,-30$


Table displacement due to yaw moment load


## LAT3 $\square-10,-20,-30$



| Model | LAT3－10 | LAT3F－10 | LAT3－20 | LAT3F－20 | LAT3－30 | LAT3F－30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stroke［mm］ | 10 |  | 20 |  | 30 |  |
| Positioning repeatability［ $\mu \mathrm{m}$ ］ | $\pm 90$ | $\pm 5$ | $\pm 90$ | $\pm 5$ | $\pm 90$ | $\pm 5$ |
| Measuring accuracy［ $\mu \mathrm{m}$ ］ | 30 | 1.25 | 30 | 1.25 | 30 | 1.25 |
| Table weight［g］ | 50 |  | 70 |  | 90 |  |

Table displacement due to roll moment load


## LAT3 $\square$－10，－20，－30



[^1]出

## $\stackrel{\sim}{3}$

岂


* Option: Can be ordered in the "How to Order" for the Card Motor.
* Accessory: Attached to the controller
* Separately sold products: Order separately. Refer to pages 894 to 896 for details.

＊Option：Can be ordered in the＂How to Order＂for the Card Motor．
＊Accessory：Attached to the controller
＊Separately sold products：Order separately．Refer to pages 894 to 896 for details．

* Option: Can be ordered in the "How to Order" for the Card Motor.
* Accessory: Attached to the controller
* Separately sold products: Order separately. Refer to pages 894 to 896 for details.

Card Motor Controller Series LATCA
System Construction/Serial Communication (2 to 16 controllers)


- Cable between branches
(Separately sold product)
LEC-CG2- $\square$

Communication cable
(Separately sold product)
LEC-CG1-■

# Card Motor Series LAT3 

How to Order


Note 1) Refer to pages 875 (LATCA) and 883 (LATC4) for detailed specifications of the controller.
Note 2) If "Without controller" has been selected, the I/O cable is also not included.
Therefore it is not possible to select the I/O cable for this option. If the I/O cable is required, please order separately. (Refer to page 893, "[I/O cable]" for details.) When controller LATC4 is selected, I/O cable LATH2 is supplied.
When controller LATCA is selected, I/O cable LATH5 is supplied.
Note 3) The DIN rail is not included. If the DIN rail is required, please order separately. (Refer to page 876, "DIN rail" and "DIN rail mounting adapter" for details.)

## Specifications



| Model |  | LAT3-10 | LAT3F-10 | LAT3-20 | LAT3F-20 | LAT3-30 | LAT3F-30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Stroke (mm) |  | 10 |  | 20 |  | 30 |  |
| Motor | Type | Moving magnet type linear motor |  |  |  |  |  |
|  | Maximum instantaneous thrust (N) ${ }^{\text {(1adid/2)3/ }}$ | 5.2 |  | 6 |  | 5.5 |  |
|  | Continuous thrust ( N$)^{\text {Note } 112 / 3)}$ | 3 |  | 2.8 |  | 2.6 |  |
| Guide | Type | Linear guide with circulating balls |  |  |  |  |  |
|  | Maximum load mass (g) | Horizontal: 500, Vertical: 100 |  |  |  | Horizontal: 500, Verrical: 50 |  |
| Sensor | Type | Optical linear encoder (incremental) |  |  |  |  |  |
|  | Resolution ( $\mu \mathrm{m}$ ) | 30 | 1.25 | 30 | 1.25 | 30 | 1.25 |
|  | Origin position signal | None | Provided | None | Provided | None | Provided |
| Pushing operation | Pushing speed (mm/s) | 6 |  |  |  |  |  |
|  | Thrust setting value ${ }^{\text {Note 1) 2) } 3 \text { ) }}$ | 1 to 5 |  | 1 to 4.8 |  | 1 to 3.9 |  |
| Positioning operation | $\begin{aligned} & \text { Positioning } \\ & \text { repeatability }(\mu \mathrm{m})^{\text {Note 4) 5) }} \end{aligned}$ | $\pm 90$ | $\pm 5$ | $\pm 90$ | $\pm 5$ | $\pm 90$ | $\pm 5$ |
| Measurement | Accuracy ( $\mu \mathrm{m}$ ) ${ }^{\text {Note 4) 5) }}$ | $\pm 100$ | $\pm 10$ | $\pm 100$ | $\pm 10$ | $\pm 100$ | $\pm 10$ |
| Maximum speed (mm/s) ${ }^{\text {Note } 6)}$ |  | 400 |  |  |  |  |  |
| Operating temperature range ( ${ }^{\circ} \mathrm{C}$ ) |  | 5 to 40 (No condensation) |  |  |  |  |  |
| Operating humidity range (\%) |  | 35 to 85 (No condensation) |  |  |  |  |  |
| Weight (g) | g) ${ }^{\text {Note } 7)}$ | 130 |  | 190 |  | 250 |  |
| Table weight (g) |  | 50 |  | 70 |  | 90 |  |

Note 1) Continuous thrust can be generated and maintained continuously. Maximum instantaneous thrust is the maximum peak thrust that can be generated. Refer to Fig. 4 Allowable thrust setting value (Page 867) and to Fig. 5 Pushing force characteristics (Page 868).
Note 2) When mounted on a base with good heat dissipating capacity at $20^{\circ} \mathrm{C}$ ambient temperature.
Note 3) The pushing force varies depending on the operating environment, pushing direction and table position. Refer to Fig. 5 Pushing force characteristics (Page 868).
Note 4) When the temperature of the Card Motor is $20^{\circ} \mathrm{C}$.
Note 5) The accuracy after mounting the Card Motor may vary depending on the mounting conditions, operating conditions and environment, so please calibrate it with the equipment used in your application.
Note 6) The maximum speed varies depending on the operating conditions (load mass, positioning distance).
Note 7) The weight of the Card Motor itself. Controllers and cables are not included.

## LAT3 $\square-\square$





Note 1）Refer to page 898 regarding Specific Product Precautions for the mounting screws．
Note 2）The length of the part of the dowel pin inserted into the positioning hole should be shorter than the specified depth．
Note 3）This drawing shows the origin position．
Note 4）The origin positions G and H are reference dimensions（guide）．Refer to page 892 for details on the origin position．
［mm］

| Model | Stroke | Table dimensions |  |  | Rail dimensions |  | Origin position Note 4） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | A | $\mathbf{B}$ | $\mathbf{C}$ | $\mathbf{D}$ | $\mathbf{E}$ | $\mathbf{F}$ | $\mathbf{G}$ | $\mathbf{H}$ |
| LAT3 $\square-\mathbf{1 0}$ | 10 | 49 | 4 | - | 60 | 50 | 4 | 10.5 |
| LAT3 $\square \mathbf{- 2 0}$ | 20 | 69 | 6 | 25 | 90 | 80 | 14 | 20.5 |
| LAT3 $\square-\mathbf{3 0}$ | 30 | 89 | 6 | 25 | 120 | 110 | 24 | 30.5 |


[^0]:    Operating conditions
    Model: LAT3- $\square$
    Mounting orientation: Horizontal/Vertical
    Step data input version: Cycle time entry method (Triangular movement profile)

[^1]:    Table 3Allowable Moment：Mmax［ $\mathrm{N} \cdot \mathrm{m}$ ］

    | Model | Pitch momentYaw moment <br> Mpmax，Mymax | Roll moment <br> Mrmax |
    | :---: | :---: | :---: |
    | LAT3 $\square-10$ | 0.2 | 0.2 |
    | LAT3 $\square-20$ | 0.3 | 0.2 |
    | LAT3 $\square-30$ | 0.4 | 0.2 |

