AC Servo Motor Driver Series LECS \square

Pulse Input Type／
Positioning Type
Page 604
Incremental Type／
Series LECSA

CC－Link Direct Input Type …Page 604

Absolute Type／

Series LECSC
CC－Link

Pulse Input Type •．．．．．．．．．．．．．．．．．．．．．．Page 604
Absolute Type／
Series LECSB

SSCNET III Type ．．．．．．．．．．．．．．．．．．．．．Page 604
Absolute Type／
Series LECSS

岚

$\begin{aligned} & \text { प } \\ & \text { ü } \end{aligned}$
¢
鵠
¢

AC Servo Motor Driver

Series LECS \square list

	Series	Compatible motor(100/200 VAC)			Control method			Application/ Function	Compatible option
		100 W	200 W	400 W	Note 1) Positioning	Pulse	Network direct input	Note 2) Synchronous	$\begin{gathered} \text { Setup } \\ \text { software } \\ \text { LEC-MRC2 } \end{gathered}$
	LECSA (Pulse input type/ Positioning type)				Up to 7 points				
ədKI Өұn\|0SqV	LECSB (Pulse input type)								
	CC-Link LECSC (CC-Link direct input type)				Up to 255 points		CC-Link Ver. 1.10		
	SSCNETIII LECSS (SSCNET III type) Compatible with Mitsubishi Electric's servo system controller network						SSCNET III	0	

Note 1) For positioning type, setting needs to be changed to use with maximum set values.
Setup software (MR Configurator2 ${ }^{\text {TM }}$) LEC-MRC2 is required.
Note 2) Available when the Mitsubishi motion controller is used for the master equipment.

Servo adjustment using auto gain tuning

Auto tuning function

- Control the difference between command value and actual action

Advanced vibration suppression control function

- Automatically suppress low frequency machine vibrations (up to 100 Hz)

With display setting function

LECSA
 number and the occupied station count.

(With the front cover opened) LECSB

Incremental encoder compatible Series LECSA

System Construction

Series LECSA (Pulse input type/ Positioning type)

- Up to 7 positioning points by point table
- Input type: Pulse input
- Control encoder: Incremental 17-bit encoder (Resolution: 131072 pulse/rev)
- Parallel input: 6 inputs output: 4 outputs

Series LECSB (Pulse input type)

- Input type: Pulse input
- Control encoder: Absolute 18-bit encoder (Resolution: 262144 pulse/rev)
- Parallel input: 10 inputs output: 6 outputs

Series LECSC (CC-Link direct input type)

- Position data/speed data setting and operation start/stop
- Positioning by up to 255 point tables (when 2 stations occupied)
- Up to 32 drivers connectable (when 2 stations occupied) with CC-Link communication
- Applicable Fieldbus protocol: CC-Link (Ver. 1.10, Max. communication speed: 10 Mbps)
- Control encoder: Absolute 18-bit encoder (Resolution: 262144 pulse/rev)

Series LECSS (SSCNET III type)

- Compatible with Mitsubishi Electric's servo system controller network
- Reduced wiring and SSCNET III optical cable for one-touch connection
- SSCNET III optical cable provides enhanced noise resistance
- Up to 16 drivers connectable with SSCNET III communication
- Applicable Fieldbus protocol: SSCNET III
(High-speed optical communication, Max. one-way communication speed: 50 Mbps)
- Control encoder: Absolute 18-bit encoder (Resolution: 262144 pulse/rev)

AC Servo Motor Driver

 Incremental TypeSeries LECSA ${ }_{\text {（Pusse Input Typerpositioning } 9 \text { Type）}}$ Absolute Type

How to Order

Dimensions
LECSA \square

For LECSA \square－S1，S3
$\xrightarrow[\text {（Bearing surface thickness 5）}]{2 \times 06 \text { Mounting hole }}$

For LECSA■－S4

LECSB \square

Dimensions

LECSC \square

* Battery included.

LECSS \square

Connector name	Description
CN1A	Front axis connector for SSCNET III optical cable
CN1B	Rear axis connector for SSCNET III optical cable
CN2	Encoder connector
CN3	I/O signal connector
CN4	Battery connector
CN5	USB communication connector
CNP1	Main circuit power supply connector
CNP2	Control circuit power supply connector
CNP3	Servo motor power connector

[^0]
ac Servo Motor Driver Seríes LECS

Specifications

Series LECSA

Model		LECSA1－S1	LECSA1－S3	LECSA2－S1	LECSA2－S3	LECSA2－S4
Compatible motor capacity［W］		100	200	100	200	400
Compatible encoder		Incremental 17－bit encoder （Resolution： $131072 \mathrm{p} / \mathrm{rev}$ ）				
Main power supply	Power voltage［V］	Single phase 100 to 120 VAC（ $50 / 60 \mathrm{~Hz}$ ）		Single phase 200 to 230 VAC（ $50 / 60 \mathrm{~Hz}$ ）		
	Allowable voltage fluctuation［V］	Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
	Rated current［A］	3.0	5.0	1.5	2.4	4.5
Control power supply	Control power supply voltage［V］	24 VDC				
	Allowable voltage fluctuation［V］	21.6 to 26．4 VDC				
	Rated current［A］	0.5				
Parallel input		6 inputs				
Parallel output		4 outputs				
Max．input pulse frequency［pps］		1 M （for differential receiver）， 200 k （for open collector）				
Function	In－position range setting［pulse］	0 to ± 65535（Command pulse unit）				
	Error excessive	± 3 rotations				
	Torque limit	Parameter setting				
	Communication	USB communication				
Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		0 to 55 （No freezing）				
Operating humidity range［\％RH］		90 or less（No condensation）				
Storage temperature range［ ${ }^{\circ} \mathrm{C}$ ］		－20 to 65 （No freezing）				
Storage humidity range［\％RH］		90 or less（No condensation）				
Insulation resistance［M Ω ］		Between the housing and SG： 10 （500 VDC）				
Weight［g］		600				700

Series LECSB

Model		LECSB1－S5	LECSB1－S7	LECSB2－S5	LECSB2－S7	LECSB2－S8
Compatible motor capacity［W］		100	200	100	200	400
Compatible encoder		Absolute 18－bit encoder （Resolution： $262144 \mathrm{p} / \mathrm{rev}$ ）				
Main power supply	Power voltage［V］	Single phase 100 to 120 VAC（ $50 / 60 \mathrm{~Hz}$ ）		Three phase 200 to 230 VAC $(50 / 60 \mathrm{~Hz})$ Single phase 200 to 230 VAC（ $50 / 60 \mathrm{~Hz}$ ）		
	Allowable voltage fluctuation［V］	Single phase 85 to 132 VAC		Three phase 170 to 253 VAC Single phase 170 to 253 VAC		
	Rated current［A］	3.0	5.0	0.9	1.5	2.6
Control power supply	Control power supply voltage［V］	Single phase 100 to 120 VAC（ $50 / 60 \mathrm{~Hz}$ ）		Single phase 200 to 230 VAC（ $50 / 60 \mathrm{~Hz}$ ）		
	Allowable voltage fluctuation［V］	Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
	Rated current［A］	0.4		0.2		
Parallel input		10 inputs				
Parallel output		6 outputs				
Max．input pulse frequency［pps］		1 M （for differential receiver）， 200 k （for open collector）				
Function	In－position range setting［pulse］	0 to ± 10000（Command pulse unit）				
	Error excessive	± 3 rotations				
	Torque limit	Parameter setting or external analog input setting（0 to 10 VDC）				
	Communication	USB communication，RS422 communication＊1				
Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		0 to 55 （No freezing）				
Operating humidity range［\％RH］		90 or less（No condensation）				
Storage temperature range［ ${ }^{\circ} \mathrm{C}$ ］		－20 to 65 （No freezing）				
Storage humidity range［\％RH］		90 or less（No condensation）				
Insulation resistance［ $\mathrm{M} \Omega$ ］		Between the housing and SG： 10 （500 VDC）				
Weight［g］		800				1000

[^1]
Specifications

Series LECSC

Model			LECSC1-S5	LECSC1-S7	LECSC2-S5	LECSC2-S7	LECSC2-S8
Compatible motor capacity [W]			100	200	100	200	400
Compatible encoder			Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)				
Main power supply	Power voltage [V]		Single phase 100 to 120 VAC ($50 / 60 \mathrm{~Hz}$)		Three phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$) Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]		Single phase 85 to 132 VAC		Three phase 170 to 253 VAC Single phase 170 to 253 VAC		
	Rated c	[A]	3.0	5.0	0.9	1.5	2.6
Control power supply	Control power supply voltage [V]		$\begin{gathered} \text { Single phase } 100 \text { to } 120 \text { VAC } \\ (50 / 60 \mathrm{~Hz}) \end{gathered}$		$\begin{gathered} \text { Single phase } 200 \text { to } 230 \text { VAC } \\ (50 / 60 \mathrm{~Hz}) \\ \hline \end{gathered}$		
	Allowable voltage fluctuation [V]		Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
	Rated current [A]		0.4		0.2		
Communication specifications	Applicable Fieldbus protocol (Version)		CC-Link communication (Ver. 1.10)				
	Connection cable		CC-Link Ver. 1.10 compliant cable (Shielded 3-core twisted pair cable)**				
	Remote station number		1 to 64				
	Cable length	Communication speed [bps]	16 k	625 k	2.5 M	5 M	10 M
		Maximum overall cable length [m]	1200	900	400	160	100
		Cable length between stations [m]	0.2 or more				
	I/O occupation area (Inputs/Outputs)		1 station occupied (Remote I/O 32 points/32 points)/(Remote register 4 words/4 words) 2 stations occupied (Remote I/O 64 points/ 64 points)/(Remote register 8 words/8 words)				
	Number of connectable drivers		Up to 42 (when 1 station is occupied by 1 driver), Up to 32 (when 2 stations are occupied by 1 driver), when there are only remote device stations.				
Command method	Remote register input		Available with CC-Link communication (2 stations occupied)				
	Point table No. input		Available with CC-Link communication, RS422 communication CC-Link communication (1 station occupied): 31 points CC-Link communication (2 stations occupied): 255 points RS422 communication: 255 points				
	Indexer positioning input		Available with CC-Link communication CC-Link communication (1 station occupied): 31 points CC-Link communication (2 stations occupied): 255 points				
Communication function			USB communication, RS-422 communication*2				
Operating temperature range [${ }^{\circ} \mathrm{C}$]			0 to 55 (No freezing)				
Operating humidity range [\%RH]			90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]			-20 to 65 (No freezing)				
Storage humidity range [\%RH]			90 or less (No condensation)				
Insulation resistance [$\mathrm{M} \Omega$]			Between the housing and SG: 10 (500 VDC)				
Weight [g]			800				1000

$* 1$ If the system comprises of both CC-Link Ver. 1.00 and Ver. 1.10 compliant cables, Ver. 1.00 specifications are applied to the overall cable length and the cable length between stations. *2 USB communication and RS422 communication cannot be performed at the same time.

Series LECSS

Model		LECSS1-S5	LECSS1-S7	LECSS2-S5	LECSS2-S7	LECSS2-S8
Compatible motor capacity [W]		100	200	100	200	400
Compatible encoder		Absolute 18-bit encoder (Resolution: $262144 \mathrm{p} / \mathrm{rev}$)				
Main power supply	Power voltage [V]	Single phase 100 to 120 VAC $(50 / 60 \mathrm{~Hz})$		Three phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$) Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Three phase 170 to 253 VAC Single phase 170 to 253 VAC		
	Rated current [A]	3.0	5.0	0.9	1.5	2.6
Control power supply	Control power supply voltage [V]	Single phase 100 to 120 VAC$(50 / 60 \mathrm{~Hz})$		Single phase 200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)		
	Allowable voltage fluctuation [V]	Single phase 85 to 132 VAC		Single phase 170 to 253 VAC		
	Rated current [A]	0.4		0.2		
Applicable Fieldbus protocol		SSCNET III (High-speed optical communication)				
Communication function		USB communication				
Operating temperature range [${ }^{\circ} \mathrm{C}$]		0 to 55 (No freezing)				
Operating humidity range [\%RH]		90 or less (No condensation)				
Storage temperature range [${ }^{\circ} \mathrm{C}$]		-20 to 65 (No freezing)				
Storage humidity range [\%RH]		90 or less (No condensation)				
Insulation resistance [M Ω]		Between the housing and SG: 10 (500 VDC)				
Weight [g]		800				1000

LECSA $\square-\square$

Main Circuit Power Supply Connector：CNP1＊Accessory

Terminal name	Function	Details
\dagger	Protective earth（PE）	Should be grounded by connecting the servo motor＇s earth terminal and the control panel＇s protective earth（PE）．
L1	Main circuit power supply	Connect the main circuit power supply． LECSA1：Single phase 100 to 120 VAC， $50 / 60 \mathrm{~Hz}$ LECSA2：Single phase 200 to 230 VAC， $50 / 60 \mathrm{~Hz}$
L2		
P	Regeneration option	Terminal to connect regeneration option LECSA \square－S1：Not connected at time of shipping． LECSA \square－S3，S4：Connected at time of shipping． ＊If regeneration option is required for＂Model Selection＂， connect to this terminal．
C		
U	Servo motor power（U）	Connect to motor cable（U，V，W）．
V	Servo motor power（V）	
W	Servo motor power（W）	

Control Circuit Power Supply Connector：CNP2		
Temminal name	Function	Details
24 V	Control circuit power supply$(24 \mathrm{~V})$	24 V side of the control circuit power supply（24 VDC） supplied to the driver
0 V	Control circuit power supply（ 0 V ）	0 V side of the control circuit power supply（24 VDC） supplied to the driver

24 V

Power Supply Wiring Example: LECSB, LECSC, LECSS

LECSB1- \square LECSC1-■ LECSS1-

LECSB2- \square
LECSC2-■
LECSS2-

For single phase 200 VAC

For three phase 200 VAC

Note) For single phase 200 to 230 VAC, power supply should be connected to L_{1} and L_{2} terminals, with nothing connected to L3.

Main Circuit Power Supply Connector: CNP1 * Accessory

Temmana name	Function	Details	
L1	Main circuit power supply	Connect the main circuit power supply. LECSB1/LECSC1/LECSS1: Single phase 100 to 120 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1,L2 LECSB2/LECSC2/LECSS2: Single phase 200 to 230 VAC, $50 / 60 \mathrm{~Hz}$ Connection terminal: L1,L2 Three phase 200 to $230 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$ Connection terminal: L1,L2,L3	
L2			
L3			
N		Do not connect.	
P1	Connect between P_{1} and P_{2}. (Connected at time of shipping.)		
P2			

Control Circuit Power Supply Connector: CNP2 * Accessory

Termnaname	Function	Details
P	Regeneration	Connect between P and D. (Connected at time of shipping.) * If regeneration option is required for "Model Selection", connect to this terminal.
C	option	

Motor Connector: CNP3 * Accessory

Termina name	Function		
U	Servo motor power (U)		
V	Servo motor power (V)	Connect to motor cable (U, V, W)	
W	Servo motor power (W)		

LECSB

Front view example

AC Servo Motor Driver Series LECS

Control Signal Wiring Example: LECSA
LECSA $\square-\square$
This wiring example shows connection with a PLC (FX3U- $\square \square$ MT/ES) manufactured by Mitsubishi Electric Corporation as when used in position control mode. Refer to the LECSA series Operation Manual and any technical literature or operation manuals for your PLC and positioning unit before connecting to another PLC or positioning unit.

Note 1) For preventing electric shock, be sure to connect the driver main circuit power supply connector (CNP1)'s protective earth (PE) terminal (marked (θ) to the control panel's protective earth (PE).
Note 2) For interface use, supply 24 VDC $\pm 10 \% 200 \mathrm{~mA}$ using an external source. 200 mA is the value when all I/O command signals are used and reducing the number of inputs/outputs can decrease current capacity. Refer to "Operation Manual" for required current for interface.
Note 3) The failure (ALM) is ON during normal conditions. When it is OFF (alarm occurs), stop the sequencer signal using the sequence program.
Note 4) The same name signals are connected inside the driver.
Note 5) For command pulse input with an open collector method. When a positioning unit loaded with a differential line driver method is used, it is 10 m or less.

Control Signal Wiring Example: LECSB

This wiring example shows connection with a positioning unit (QD75D) manufactured by Mitsubishi Electric Corporation as when used in position control mode. Refer to the LECSB series Operation Manual and any technical literature or operation manuals for your PLC and positioning unit before connecting to another PLC or positioning unit.

Note 1) For preventing electric shock, be sure to connect the driver's protective earth (PE) terminal (marked Θ) to the control panel's protective earth (PE). Note 2) For interface use, supply $24 \mathrm{VDC} \pm 10 \% 300 \mathrm{~mA}$ using an external source.
Note 3) The failure (ALM) is ON during normal conditions. When it is OFF (alarm occurs), stop the sequencer signal using the sequence program.
Note 4) The same name signals are connected inside the driver.
Note 5) For command pulse input with a differential line driver method. For open collector method, it is 2 m or less.

Note 1）For preventing electric shock，be sure to connect the driver＇s protective earth（PE）terminal（marked Θ ）to the control panel＇s protective earth（PE）． Note 2）For interface use，supply 24 VDC $\pm 10 \% 150 \mathrm{~mA}$ using an external source．
Note 3）The failure（ALM）is ON during normal conditions．When it is OFF（alarm occurs），stop the sequencer signal using the sequence program．

Control Signal Wiring Example: LECSS

Note 6) Connections from Axis 2 onward are omitted.
Note 7) Up to 16 axes can be set.
Note 8) Be sure to place a cap on unused CN1A/CN1B.

Options

Motor cable，Lock cable，Encoder cable（LECS \square common）

LE－CSE－$\square \square$ ：Encoder cable

I／O connector（Without cable，Connector only）

Driver type

A	LECSA \square, LECSC \square
B	LECSB \square
S	LECSS \square

LE－CSNA

LE－CSNB

＊LE－CSNA：10126－3000PE（connector）／10326－52F0－008（shell kit） manufactured by Sumitomo 3M Limited or equivalent item． LE－CSNB：10150－3000PE（connector）／10350－52F0－008（shell kit） manufactured by Sumitomo 3M Limited or equivalent item． LE－CSNS：10120－3000PE（connector）／10320－52F0－008（shell kit） manufactured by Sumitomo 3M Limited or equivalent item．
＊Applicable conductor size：AWG24 to 30

Options

SSCNET III optical cable

I/O cable

* LEC-CSNA-1: 10126-3000PE (connector)/10326-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item.
LEC-CSNB-1: 10150-3000PE (connector)/10350-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item.
LEC-CSNS-1: 10120-3000PE (connector)/10320-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item.
* Conductor size: AWG24

Wiring

LEC-CSNA-1: Pin no. 1 to 26
LEC-CSNB-1: Pin no. 1 to 50
LEC-CSNS-1: Pin no. 1 to 20

Connector pin no.		Pair no. of wire	Insulation color	Dot mark	Dot color
$\frac{0}{9}$	1	1	Orange	\square	Red
	2			\square	Black
	3	2	Light gray	\square	Red
	4			\square	Black
	5	3	White	\square	Red
	6			\square	Black
	7	4	Yellow	\square	Red
	8			\square	Black
	9	5	Pink	\square	Red
	10			\square	Black
	11	6	Orange	$\square \square$	Red
	12			$\square \square$	Black
	13	7	Light gray	$\square \square$	Red
	14			$\square \square$	Black
	15	8	White	$\square \square$	Red
	16			$\square \square$	Black
	17	9	Yellow	$\square \square$	Red
	18			-	Black

Connector pin no.		Pair no. of wire	Insulation color	Dot mark	Dot color
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{4} \end{aligned}$	19	10	Pink	■	Red
	20			■	Black
	21	11	Orange	$\square \square \square$	Red
	22			- $=$	Black
	23	12	Light gray	■■■	Red
	24			$\square \square \square$	Black
	25	13	White	- $=\square$	Red
	26			- \quad -	Black
	27	14	Yellow	$\square \square \square$	Red
	28			- $=$	Black
	29	15	Pink	$\square \square \square$	Red
	30			$\square \square \square$	Black
	31	16	Orange	-■■■	Red
	32			-mmm	Black
	33	17	Light gray	■■■■	Red
	34			■■■■	Black

Connector pin no.		Pair no. of wire	Insulation color	Dot mark	$\begin{aligned} & \text { Dot } \\ & \text { color } \end{aligned}$
$\begin{aligned} & \frac{0}{0} \\ & \hline \frac{0}{6} \\ & 4 \end{aligned}$	35	18	White	■■■■	Red
	36			- \square ■	Black
	37	19	Yellow	-	Red
	38			-mmm	Black
	39	20	Pink	-mmm	Red
	40			-mmm	Black
	41	21	Orange	-	Red
	42			■■■■■	Black
	43	22	Light gray		Red
	44			-	Black
	45	23	White	- mmmm	Red
	46			-mmme	Black
	47	24	Yellow	-	Red
	48			-mmme	Black
	49	25	Pink	-	Red
	50			■■■mm	Black

Options

Adjustment，waveform display，diagnostics，parameter read／write，and test operation can be performed upon a PC． Compatible PC
When using setup software（MR Configurator2 ${ }^{\text {TM }}$ ），use an IBM PC／AT compatible PC that meets the following operating conditions．

Hardware Requirements

Equipment		Setup software（MR Configurator2 ${ }^{\text {TM }}$ ） LEC－MRC2 \square
Note 1）2）3） 4）5）6 7） 7 9） PC	OS	Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR 8}$ Enterprise Operating System Microsoff ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 8 Pro Operating System Microsoft ${ }^{\text {® }}$ Windows ${ }^{\circledR} 8$ Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Enterprise Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR 7}$ Ultimate Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 7 Professional Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 7 Home Premium Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Starter Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Enterprise Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Ultimate Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Business Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Home Premium Operating System Microsoff ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Home Basic Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ XP Professional Operating System，Service Pack 2 or later Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ XP Home Edition Operating System，Service Pack 2 or later Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 2000$ Professional Operating System，Service Pack 4 or later
	Available HD space	1 GB or more
	Communication interface	Use USB port．
Display		Resolution 1024×768 or more Must be capable of high color（16－bit）display． The connectable with the above PC
Keyboard		The connectable with the above PC
Mouse		The connectable with the above PC
Printer		The connectable with the above PC
USB cable ${ }^{\text {Note 8）}}$		LEC－MR－J3USB

Note 1）Before using a PC for setting LECSA point table method／program operation method，upgrade to version 1．18U（Japanese version）／ version 1．19V（English version）or later．Refer to Mitsubishi Electric Corporation＇s website for version upgrade information．
Note 2）Windows ${ }^{\circledR}$ and Windows Vista ${ }^{\circledR}$ are registered trademarks of Microsoft Corporation in the United States and other countries．
Note 3）On some PCs，setup software（MR Configurator2 ${ }^{\text {TM }}$ ）may not run properly．
Note 4）When Windows ${ }^{\circledR}$ XP or later is used，the following functions cannot be used．
－Windows Program Compatibility mode
Fast User Switching
Remote Desktop
－Large Fonts Mode（Display property）
DPI settings other than 96 DPI（Display property） 64－bit OSs are not supported，except for Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR 7}$ or later．
Note 5）When Windows ${ }^{\circledR 7}$ is used，the following functions cannot be used． Windows XP Mode
－Windows Touch
Note 6）When using this software with Windows Vista ${ }^{\circledR}$ or later， log in as a user having USER authority or higher．
Note 7）When Windows ${ }^{\circledR 8}$ is used，the following functions cannot be used． －Hyper－V －Modern UI style
Note 8）Order USB cable separately．
－This cable is compatible with the setup software （MR Configurator ${ }^{\text {TM }}$ ：LEC－MR－SETUP221D）．
Note 9）Using a PC for setting Windows ${ }^{\text {® }} 8.1$ ，upgrade to version 1．25B or later．Refer to Mitsubishi Electric Corporation＇s website for version upgrade information．

Setup Software Compatible Driver

Compatible driver	Setup software	
	MR Configurator ${ }^{\text {TM }}$	MR Configurator ${ }^{\text {TM }}$
	LEC－MR－SETUP221 \square	LEC－MRC2 \square
LECSA	\bigcirc	\bigcirc
LECSB	\bigcirc	\bigcirc
LECSC	\bigcirc	\bigcirc
LECSS \square－S \square	\bigcirc	\bigcirc
LECSS2－T \square	－	\bigcirc

USB cable（ 3 m ）

LEC－MR－J3USB

＊MR－J3USBCBL3M manufactured by Mitsubishi Electric Corporation． Cable for connecting PC and driver when using the setup software（MR Configurator2 ${ }^{\text {TM }}$ ）．
Do not use any cable other than this cable．

Battery（only for LECSB，LECSC or LECSS）
LEC－MR－J3BAT
＊MR－J3BAT manufactured by Mitsubishi Electric Corporation． Battery for replacement． Absolute position data is maintained by installing the battery to the driver．

سٌ

Design/Selection

\triangle Warning

1. Use the specified voltage.

If the applied voltage is higher than the specified voltage, malfunction and damage to the driver may result. If the applied voltage is lower than the specified voltage, there is a possibility that the load cannot be moved due to internal voltage drop. Check the operating voltage prior to start. Also, confirm that the operating voltage does not drop below the specified voltage during operation.
2. Do not use the products outside the specifications.

Otherwise, fire, malfunction or damage to the driver/actuator can result. Check the specifications before use.
3. Install an emergency stop circuit.

Install an emergency stop outside the enclosure in easy reach to the operator so that the operator can stop the system operation immediately and intercept the power supply.
4. To prevent danger and damage due to a breakdown or malfunction of these products, which may occur at a certain probability, a backup system should be arranged in advance by using a multiple-layered structure or by making a fail-safe equipment design etc.
5. If there is a risk of fire or personal injury due to abnormal heat generation, sparking, smoke generated by the product, etc., cut off the power supply from this product and the system immediately.
6. The parameters of the driver are set to initial values.

Please change parameters according to the specifications of the customer's equipment before use.
Refer to the operation manual for details of parameters.

Handling

© Warning

1. Never touch the inside of the driver and its peripheral devices.
Otherwise, electric shock or failure can result.
2. Do not operate or set up this equipment with wet hands. Otherwise, electric shock can result.
3. Do not use a product that is damaged or missing any components.
Electric shock, fire or injury can result.
4. Use only the specified combination between the electric actuator and driver.
Otherwise, it may cause damage to the driver or to the other equipment.
5. Be careful not to touch, get caught or hit by the workpiece while the actuator is moving.
An injury can result.
6. Do not connect the power supply or power up the product until it is confirmed that the workpiece can be moved safely within the area that can be reached by the workpiece.
Otherwise, the movement of the workpiece may cause an accident.
7. Do not touch the product when it is energized and for some time after the power has been disconnected, as it is very hot.
Otherwise, it may cause burns due to the high temperature.
8. Check the voltage using a tester at least 5 minutes after power-off when performing installation, wiring and maintenance.
Otherwise, electric shock, fire or injury can result.

Handling

\triangle Warning

9. Static electricity may cause a malfunction or damage the driver. Do not touch the driver while power is supplied to it.
Take sufficient safety measures to eliminate static electricity when it is necessary to touch the driver for maintenance.
10. Do not use the products in an area where they could be exposed to dust, metallic powder, machining chips or splashes of water, oil or chemicals.
Otherwise, a failure or malfunction can result.
11. Do not use the products in a magnetic field.

Otherwise, a malfunction or failure can result.
12. Do not use the products in an environment where flammable, explosive or corrosive gases, liquids or other substances are present.
Otherwise, fire, explosion or corrosion can result.
13. Avoid heat radiation from strong heat sources, such as direct sunlight or a hot furnace.
Otherwise, it will cause a failure to the driver or its peripheral devices.
14. Do not use the products in an environment with cyclic temperature changes.
Otherwise, it will cause a failure to the driver or its peripheral devices.
15. Do not use the products in an environment where surges are generated.
Devices (solenoid type lifters, high frequency induction furnaces, motors, etc.) that generate a large amount of surge around the product may lead to deterioration or damage to the internal circuits of the products. Avoid supplies of surge generation and crossed lines.
16. Do not install these products in a place subject to vibration and impact.
Otherwise, a malfunction or failure can result.
17. When a surge generating load such as a relay or solenoid valve is directly driven, use a product that incorporates a surge absorption element.

Mounting

\triangle Warning

1. Install the driver and its peripheral devices on fireproof material.
Direct installation on or near flammable material may cause fire.
2. Do not install these products in a place subject to vibration and impact.
Otherwise, a malfunction or failure can result.
3. The driver should be mounted on a vertical wall in a vertical direction.
Also, do not cover the driver's suction/exhaust ports.
4. Install the driver and its peripheral devices on a flat surface.
If the mounting surface is not flat or uneven, excessive force may be applied to the housing and other parts resulting in a malfunction.

Power Supply

\triangle Caution

1．Use a power supply with low noise between lines and between power and ground．
In cases where noise is high，use an isolation transformer．
2．Take appropriate measures to prevent surges from lightning．Ground the surge absorber for lightning separately from the grounding of the driver and its peripheral devices．

Wiring

© Warning

1．The driver will be damaged if a commercial power supply（ $100 \mathrm{~V} / 200 \mathrm{~V}$ ）is added to the driver＇s servo motor power（U，V，W）．Be sure to check wiring such as wiring mistakes when the power supply is turned on．
2．Connect the ends of the $\mathrm{U}, \mathrm{V}, \mathrm{W}$ wires from the motor cable correctly to the phases（ $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ）of the servo motor power．If these wires do not match up，it is unable to control the servo motor．

Grounding

© Warning

1．For grounding actuator，connect the copper wire of the actuator to the driver＇s protective earth（PE）terminal and connect the copper wire of the driver to the earth via the control panel＇s protective earth（PE）terminal． Do not connect them directly to the control panel＇s protective earth（PE）terminal．

2．In the unlikely event that malfunction is caused by the ground，it may be disconnected．

Maintenance

© Warning

1．Perform maintenance checks periodically．
Confirm wiring and screws are not loose．
Loose screws or wires may cause unexpected malfunction．
2．Conduct an appropriate functional inspection and test after completed maintenance．
In case of any abnormalities（if the actuator does not move or the equipment does not operate properly etc．），stop the operation of the system．
Otherwise，unexpected malfunction may occur and safety cannot be assured．
Conduct a test of the emergency stop to confirm the safety of the equipment．
3．Do not disassemble，modify or repair the driver or its peripheral devices．
4．Do not put anything conductive or flammable inside the driver．
Otherwise，fire can result．
5．Do not conduct an insulation resistance test or insulation withstand voltage test．
6．Reserve sufficient space for maintenance．
Design the system so that it allows required space for maintenance．

AC Servo Motor Driver Series LECSS-T

Power supply voltage (V) 200 to 240 VAC 100/200/400

SSCNETIIIH Compatible

- Applicable Fieldbus protocol: SSCNETII//H (High-speed optical communication, max. - Bidirectional communication speed: 3 times

- SSCNET III/H and SSCNET III products are compatible.

SSCNET III/H compatible products can be added to existing SSCNET III systems for system expansion.

Reassembly of the system (new installation of master PLC) is not required.

* Note that the communication speed is that of SSCNET III (50 Mbps).
\square Communication speed: 50 Mbps
SSCNET III/H compatible controllers
SSCNETIII compatible controllers
Current model

SSCNET III compatible products

- Improved noise resistance - STO (Safe Torque Off) safety function available

 - Control encoder: Absolute 22-bit encoder (Resolution: 4194304 p/rev)Compatible Actuators

Series LECSS-T

System Construction

[^2]
SSCNET／II／H Compatible AC Servo Motor Driver

© Electric Actuator／Slider Type，Ball Screw Drive Series LEFS
\qquad
How to Order ．．． 623
© Electric Actuator／Slider Type，Belt Drive
Series LEFB
How to Order ．．． 624
（O）Electric Actuator／High Rigidity Slider Type，Ball Screw Drive
Series LEJS
How to Order ．．． 625
© Electric Actuator／High Rigidity Slider Type，Belt Drive Series LEJB
How to Order ．．． 626
© O ectric Actuator／Rod Type
Series LEY
How to Order ．．．Page 627
Force Conversion Graph ．．Page 629
Specifications ．．Page 630
Dimensions ．．Page 632
© Electric Actuator／Guide Rod Type
Series LEYG
How to Order ．．．Page 635
Force Conversion Graph ．．Page 637
Specifications ．．Page 638
Dimensions ．．Page 639

Series LECSS－T

How to Order ．．．Page 641
Dimensions ．．． 641
Specifications ．．． 642
Power Supply Wiring Example ．．Page 642
Control Signal Wiring Example ．．．Page 643
Options
Page 644

AC Servo Motor Driver

Electric Actuator/Slider Type Ball Screw Drive

Series LEFS LEFS25, 32, 40

Please contact SMC for clean room specification and the models compatible with secondary batteries.

There are changes in the How to Order. Refer to page 68 and after for other details.

How to Order

25
32
40

 position

Nil	In-line
\mathbf{R}	Right side parallel
\mathbf{L}	Left side parallel

(4) Motor type *1

Symbol	Type	Output $[W]$	Actuator size	Compatible driver
T6	AC servo motor	100	25	LECSS2-T5
T7	(Absolute	200	32	LECSS2-T7
T8	encoder)	400	40	LECSS2-T8

*1 For motor type T6, the compatible driver part number suffix is T5.

6 Stroke $[\mathrm{mm}] * 2$	
50	50
to	to
1200	1200

*2 Refer to the applicable stroke table.

$\mathbf{7}$ Motor option
Nil
B
Without option

8 Cable type $* 4, * 6$

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

*4 The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)
(9) Cable length [m] $* 5, * 6$

$\mathbf{N i l}$	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

*5 The length of the encoder, motor and lock cables are the same.

10 Driver type *6

	Compatible driver	Power supply voltage [V]
Nil	Without driver	-
S2	LECSS2-T \square	200 to 240

*6 When the driver type is selected, the cable is included. Select cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver
11 I/O cable length [m] ${ }^{* 7}$

NiI	Without cabbe
H	Without cable (Connector only)
$\mathbf{1}$	1.5

*7 When "Without driver" is selected for driver type,
only "Nil: Without cable" can be selected.
Refer to page 645 if $/ / O$ cable is required.
(Options are shown on page 645.)
Applicable Stroke Table *3

Stroke Model $[\mathrm{mm}]$	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1100	1200
LEFS25	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	-	-	-
LEFS32	\bigcirc	-	-																			
LEFS40	-	-	\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc											

*3 Please consult with SMC for non-standard strokes as they are produced as special orders.

Compatible Driver

Driver type	
Series	LECSS-T
Applicable network	SSCNET III/H
Control encoder	Absolute 22-bit encoder
Communication function	USB communication
Power supply voltage [V]	200 to 240 VAC (50/60 Hz)
Reference page	Page 641

Electric Actuator/Slider Type Belt Drive

Series LEFB LEfB25, 32, 40
C R RoHS
There are changes in the How to Order. Refer to page 89 and after for other details.

(3) Motor type *

Symbol	Type	Output [W]	Actuator size	Compatible driver
T6	AC servo motor (Absolute encoder)	100	25	LECSS2-T5
T7		200	32	LECSS2-T7
T8		400	40	LECSS2-T8

* For motor type T6, the compatible driver part number suffix is T5.

6 Motor option

* Refer to the applicable stroke table.

7 Cable type $* 1, * 2$	
Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

*1 The motor and encoder cables are included. (The lock cable is also included when the motor with lock option is selected.)
*2 Standard cable entry direction is "(A) Axis side". (Refer to page 644 for details.)
8 Cable length $[\mathrm{m}]$

Nil	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

* The length of the encoder, motor and lock cables are the same.

* When the driver type is selected, the cable is included. Select cable type and cable length.
Example)
S2S2: Standard cable (2 m) +
Driver (LECSS2)

S2 : Standard cable (2 m)
Nil : Without cable and driver

* When "Without driver" is selected for driver type, only "Nil: Without cable" can be selected.
Refer to page 645 if I/O cable is required.
(Options are shown on page 645.)
- Standard $/ \bigcirc$: Produced upon receipt of order

1600 1700 1800 1900 2000 2500 3000

Stroke Model	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500	3000
LEFB25	-	\bigcirc	-	-																
LEFB32	\bigcirc	-	-																	
LEFB40	\bigcirc	-	\bigcirc																	

* Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.

Compatible Driver

Driver type	
Series	LECSS-T
Applicable network	SSCNET III/H
Control encoder	Absolute 22-bit encoder
Communication function	USB communication
Power supply voltage [V]	200 to 240 VAC (50/60 Hz)
Reference page	Page 641

Electric Actuator/High Rigidity Slider Type Ball Screw Drive

Series LEJS LEJS40, 63

Please contact SMC for clean room specification and the models compatible with secondary batteries.

There are changes in the How to Order. Refer to page 124 and after for other details.

How to Order

Nil	Basic type
H	High precision type

(3) Motor type *1

Symbol	Type	Output [W]	Actuator size	Compatible driver
T6	AC servo motor (Absolute encoder)	100	40	LECSS2-T5
n	200	63	LECSS2-T7	

*1 For motor type T6, the compatible driver part number suffix is T5.

Lead [mm]

Symbol	LEJS40	LEJS63
H	24	30
A	16	20
B	8	10

6 Motor option

Nil	Without option
B	With lock

8 Cable length [m] $* 5, * 6$

Nil	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

*5 The length of the encoder, motor and lock cables are the same.Driver type *6

	Compatible driver	Power supply volage [V]
Nil	Without driver	-
S2	LECSS2-T	200 to 240

*6 When the driver type is selected, the cable is included. Select cable type and cable length.
Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver
10 I/O cable length [m] $* 7$

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

*7 When "Without driver" is selected for driver type, only "Nil: Without cable" can be selected.
Refer to page 645 if I/O cable is required.
(Options are shown on page 645.)

Applicable Stroke Table *3

Stroke $[\mathrm{mm}]$	200	300	400	500	600	700	800	900	1000	1200	1500
Model											

*3 Please consult with SMC for non-standard strokes as they are produced as special orders.

Compatible Driver

Driver type	SSCNETII/H type
Series	LECSS-T
Applicable network	SSCNET III/H
Control encoder	Absolute 22-bit encoder
Communication function	USB communication
Power supply voltage [V]	200 to 240 VAC ($50 / 60 \mathrm{~Hz}$)
Reference page	Page 641

Electric Actuator／High Rigidity Slider Type Belt Drive

Motor type＊1

Symbol	Type	Output ［W］	Actuator size	Compatible driver
T6	AC servo motor （Absolute encoder）	100	40	LECSS2－T5
	200	63	LECSS2－T7	

＊1 For motor type T6，the compatible driver part number suffix is T5．

Stroke［mm］＊2

5 Motor option

Nil	Without option
\mathbf{B}	With lock

6	Cable type $* 4, * 6$
Nil	Without cable
S	Standard cable
R	Robotic cable（Flexible cable）

＊4 The motor and encoder cables are included．（The lock cable is also included when the motor with lock option is selected．）

7 Cable length $[\mathrm{m}] * 5, * 6$
Nil
$\mathbf{2}$
$\mathbf{5}$
\mathbf{A}

＊5 The length of the encoder， motor and lock cables are the same．

8 Driver type＊6

	Compatible driver	Power supply voltage［V］
Nil	Without driver	-
S2	LECSS2－T \square	200 to 240

＊6 When the driver type is selected， the cable is included．Select cable type and cable length．
Example）
S2S2：Standard cable（2 m）＋
Driver（LECSS2）
S2 ：Standard cable（2 m）
Nil ：Without cable and driver

9 I／O cable length［m］$* 7$

Nil	Without cable
\mathbf{H}	Without cable（Connector only）
$\mathbf{1}$	1.5

＊ 7 When＂Without driver＂is selected for driver type，only＂Nil：Without cable＂can be selected．
Refer to page 645 if I／O cable is required．
（Options are shown on page 645．）

سٌ

$\stackrel{\sim}{3}$

Compatible Driver

Driver type	SSCNETIIIH type
Series	LECSS－T
Applicable network	SSCNET III／H
Control encoder	Absolute 22－bit encoder
Communication function	USB communication
Power supply voltage［V］	200 to 240 VAC（50／60 Hz）
Reference page	Page 641

Electric Actuator/
 Rod Type

Please contact SMC for dust-tight/water-jet-proof (IP65 equivalent) and the models compatible with secondary batteries.

There are changes in the How to Order, force conversion graph, specifications, weight and dimensions. Refer to page 248 and after for other details.

How to Order

4 Motor type *

Symbol	Type	Output [W]	Actuator size	Compatible driver
T6	AC servo motor (Absolute encoder)	100	25	LECSS2-T5
T7		200	32	LECSS2-T7
T8		400	63	LECSS2-T8

* For motor type T6, the compatible driver part number suffix is T5.
(5) Lead [mm]

Symbol	LEY25	LEY32 *1	LEY63
A	12	$16(20)$	20
B	6	$8(10)$	10
C	3	$4(5)$	5
L	-	-	$2.86 * 2$

*1 The values shown in () are the lead for top mounting, right/left side parallel types. (Equivalent lead which includes the pulley ratio [1.25:1])
*2 Only available for top mounting and right/left side parallel types. (Equivalent lead which includes the pulley ratio [4:7])

8 Motor option

Nil

B With lock

* When "With lock" is selected for the top mounting and right/left side parallel types, the motor body will stick out of the end of the body for size 25 with strokes 30 mm or less. Check for interference with workpieces before selecting a model.

Rod end thread

Nil	Rod end female thread
\mathbf{M}	Rod end male thread (1 rod end nut is included.)

6 Stroke [mm]
30 30 to to 800 800

* Refer to the applicable stroke table.
7 Dust-tight/Water-jet-proof (Only available for LEY63)

Symbol	LEY25/32	LEY63
Nil	IP4x equivalent	IP5x equivalent (Dust-protected)
P	-	IP65 equivalent (Dust-tight/ Water-jet-proof)/With vent hole tap

* When using the dust-tight/water-jet-proof (IP65 equivalent), correctly mount the fitting and tubing to the vent hole tap, and then place the end of the tubing in an area not exposed to dust or water.
* The fitting and tubing should be provided separately by the customer.
Select [Applicable tubing O.D.: ø4 or more,
Connection thread: Rc1/8].
* Cannot be used in environments exposed to cutting oil etc. Take suitable protective measures.

10 Mounting *1

Symbol	Type	Motor mounting position	
		Top/Parallel	In-line
Nil	Ends tapped/ Body bottom tapped		-
\mathbf{L}	Foot		-
F	Rod flange $* 2$	$* 4$	-
\mathbf{G}	Head flange $* 2$	$* 5$	-
\mathbf{D}	Double clevis $* 3$	\bullet	-

*1 Mounting bracket is shipped together, (but not assembled).
*2 For horizontal cantilever mounting with the rod flange, head flange and ends tapped, use the actuator within the following stroke range.

- LEY25: 200 mm or less • LEY32: 100 mm or less • LEY63: 400 mm or less
*3 For mounting with the double clevis, use the actuator within the following stroke range.
- LEY25: 200 mm or less • LEY32: 200 mm or less • LEY63: 300 mm or less
*4 Rod flange is not available for the LEY25 with strokes 30 mm and motor option "With lock".
*5 Head flange is not available for the LEY32/63.

Applicable Stroke Table

: Standard

	30	50	100	150	200	250	300	350	400	450	500	600	700	800	Manufacturable stroke range
LEY25	\bigcirc	-	-	-	-	-	15 to 400								
LEY32	\bigcirc	-	\bigcirc	-	-	-	20 to 500								
LEY63	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	50 to 800								

[^3]
11 Cable type

Nil	Without cable
S	Standard cable
R	Robotic cable (Flexible cable)

12 Cable length [m]

Nil	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

13 Driver type

	Compatible driver	Power supply voltage [V]
Nil	Without driver	-
S2	LECSS2-T \square	200 to 240

* When the driver type is selected, the cable is included. Select cable type and cable length. Example)
S2S2: Standard cable (2 m) + Driver (LECSS2)
S2 : Standard cable (2 m)
Nil : Without cable and driver
(14) I/O cable length [m] *

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

* When "Without driver" is selected for driver type, only "Nil: Without cable" can be selected. Refer to page 645 if I/O cable is required. (Options are shown on page 645.)

Compatible Driver

Driver type	SSCNETIIIH type
Series	LECSS-T
Applicable network	SSCNET III/H
Control encoder	Absolute 22-bit encoder
Communication function	USB communication
Power supply voltage [V]	200 to 240 VAC (50/60 Hz)
Reference page	Page 641

Series LEY

AC Servo Motor

Force Conversion Graph (Guide)

LEY25 \square T6 (Motor mounting position: Top/Parallel, In-line)

LEY32 \square T7 (Motor mounting position: Top/Parallel)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
20 or less	100	-
24	60	1.5

LEY63 \square T8 (Motor mounting position: Top/Parallel, In-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
20 or less	100	-
24	60	1.5
32	30	0.5
40	20	0.16

LEY32DT7 (Motor mounting position: In-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
20 or less	100	-
24	60	1.5

Specifications

Model				LEY25（Top／Parallel）／LEY25D（In－line）			LEY32（Top／Parallel）			LEY32D（In－line）		
Stroke［mm］${ }^{\text {Note 1）}}$				$\begin{gathered} 30,50,100,150,200,250, \\ 300,350,400 \end{gathered}$			$\begin{gathered} 30,50,100,150,200,250 \\ 300,350,400,450,500 \\ \hline \end{gathered}$			$\begin{gathered} 30,50,100,150,200,250 \\ 300,350,400,450,500 \\ \hline \end{gathered}$		
	Work load［kg］		Horizontal ${ }^{\text {Note 2）}}$	18	50	50	30	60	60	30	60	60
			Vertical	8	16	30	9	19	37	12	24	46
	Pushing force［ N$]^{\text {Note } 3)}$（Set value： 12 to 24\％）			65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max．${ }^{\text {Note 4）}}$	Stroke range	Up to 300	900	450	225	1200	600	300	1000	500	250
	speed		305 to 400	600	300	150						
	［mm／s］		405 to 500	－	－	－	800	400	200	640	320	160
	Pushing speed［mm／s］Note 5）			35 or less			30 or less			30 or less		
	Max．acceleration／deceleration［ $\left.\mathrm{mm} / \mathrm{s}^{2}\right]$			5000			5000					
	Positioning repeatability［mm］		Basic type	± 0.02			± 0.02					
			High recision type	± 0.01			± 0.01					
	Lost motion Note 6） ［mm］		Basic type	0.1 or less								
			High recisision type	0.05 or less								
	Lead［mm］（including pulley ratio）			12	6	3	20	10	5	16	8	4
	Impact／Vibration resistance［ $\mathrm{m} / \mathrm{s}^{2}$ ］Note 7）			50／20			50／20					
	Actuation type			Ball screw＋Belt（LEY \square ）／Ball screw（LEY $\square \mathrm{D}$ ）			Ball screw＋Belt［1．25：1］			Ball screw		
	Guide type			Sliding bushing（Piston rod）			Sliding bushing（Piston rod）					
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40			5 to 40					
	Operating humidity range［\％RH］			90 or less（No condensation）			90 or less（No condensation）					
	Required conditions for Note 8） ＂Regeneration option＂［kg］		Horizontal	8 or more	31 or more	Not required	15 or more	Not required	Not required	23 or more	Not required	Not required
			Vertical	3 or more	2 or more	2 or more	6 or more	7 or more	11 or more	6 or more	7 or more	12 or more
	Motor output／Size			$100 \mathrm{~W} / \square 40$			$200 \mathrm{~W} / \square 60$					
	Motor type			AC servo motor（200 VAC）			AC servo motor（200 VAC）					
	Encoder			Motor type T6，T7：Absolute 22－bit encoder（Resolution： $4194304 \mathrm{p} / \mathrm{rev}$ ）								
	Power consumption［W］Note 9）		Horizontal	45			65			65		
			Vertical	145			175			175		
	Standby power consumption when operating［W］${ }^{\text {Note 10）}}$		Horizontal	2			2			2		
			Vertical	8			8			8		
	Max．instantaneous power consumption［W］${ }^{\text {Noie 11）}}$			445			724			724		
若	Type Note 12）			Non－magnetizing lock								
	Holding force［N］			131	255	485	157	308	588	197	385	736
	Power consumption［W］at $20^{\circ} \mathrm{C}$ Note 13）			6.3			7.9			7.9		
	Rated voltage［V］			$24 \mathrm{VDC}_{-10 \%}^{0}$								

Note 1）Please consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）The maximum value of the horizontal work load．An external guide is necessary to support the load．The actual work load changes according to the condition of the external guide．Please confirm using actual device．
Note 3）The force setting range（set values for the driver）for the pushing operation with the torque control mode，etc．Set it with reference to＂Force Conversion Graph（Guide）＂on page 629.
Note 4）The allowable speed changes according to the stroke
Note 5）The allowable collision speed for the pushing operation with the torque control mode，etc． Note 6）A reference value for correcting an error in reciprocal operation．
Note 7）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．

24 VDC $_{-10^{\circ}}$

Test was performed in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 8）The work load conditions which require＂Regeneration option＂when operating at the maximum speed（Duty ratio：100\％）．Order the regeneration option separately．For details and order numbers，refer to＂Required Conditions for Regeneration Option＂on pages 225 and 226.
Note 9）The power consumption（including the driver）is for when the actuator is operating
Note 10）The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during the operation
Note 11）The maximum instantaneous power consumption（including the driver）is for when the actuator is operating．
Note 12）Only when motor option＂With lock＂is selected．
Note 13）For an actuator with lock，add the power consumption for the lock

Weight

Product Weight

	Series
Stroke［mm］	
흥 일 Absolute encoder	
	Series
Stroke［mm］	
$\begin{aligned} & \text { 흘 o } \\ & \text { 일 } \end{aligned}$	Absolute encoder

LEY25 \square（Motor mounting position：Top／Parallel） Stroke［mm］ Absolute encoder | 30 | 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Additional Weight

［kg］			
Size		$\mathbf{2 5}$	$\mathbf{3 2}$
Lock	Absolute encoder	0.3	0.4
Rod end male thread	Male thread	0.03	0.03
	Nut	0.02	0.02
Foot（2 sets including mounting bolt）	0.08	0.14	
Rod flange（including mounting bolt）	0.17	0.20	
Head flange（including mounting bolt）			
Double clevis（including pin，retaining ring and mounting bolt）	0.16	0.22	

Series LEY

AC Servo Motor

Specifications

Model				LEY63 \square (Top/Parallel)				LEY63D \square (In-line)		
	Stroke [mm] ${ }^{\text {Note 1) }}$			100, 200, 300, 400, 500, 600, 700, 800						
	Work load [kg]		Horizontal Note 2)	40	70	80	200	40	70	80
			Vertical	19	38	72	115	19	38	72
	Pushing force [N$]^{\text {Note } 3)}$ (Set value: 12 to 40\%)			156 to 521	304 to 1012	573 to 1910	1003 to 3343	156 to 521	304 to 1012	573 to 1910
	Note 4) Max. speed [mm/s]	Stroke range	Up to 500	1000	500	250	70	1000	500	250
			505 to 600	800	400	200		800	400	200
			605 to 700	600	300	150		600	300	150
			705 to 800	500	250	125		500	250	125
	Pushing speed [mm/s] ${ }^{\text {Note 5) }}$			30 or less						
	Max. acceleration/deceleration [mm/s ${ }^{2}$]			5000			3000	5000		
	Positioning repeatability [mm]		Basic type	± 0.02						
			High precision type	± 0.01						
	Lost motion [mm] ${ }^{\text {Note 6) }}$		Basic type	0.1 or less						
			High precision type	0.05 or less						
	Screw lead [mm] (including pulley ratio)			20	10	5	5 (2.86)	20	10	5
	Impact/Vibration resistance [m/s ${ }^{2}$] Note 7)			50/20						
	Actuation type			Ball screw + Belt			Bal screer + Betif Pullej alio 4:7]	Ball screw		
	Guide type			Sliding bushing (Piston rod)						
	Operating temperature range [${ }^{\circ} \mathrm{C}$]			5 to 40						
	Operating humidity range [\%RH]			90 or less (No condensation)						
	Required conditions for Note 8) "Regeneration option" [kg]		Horizontal	Not required						
			Vertical	2 or more	5 or more	12 or more	46 or more	2 or more	5 or more	12 or more
	Motor output/Size			$400 \mathrm{~W} / \square 60$						
을	Motor type			AC servo motor (200 VAC)						
을	Encoder			Motor type T8: Absolute 22-bit encoder (Resolution: $4194304 \mathrm{p} / \mathrm{rev}$)						
花	Power consumption [W] Note 9)		Horizontal	210						
$\frac{0}{n}$			Vertical				230			
른	Standby power consumption when operating [W] Note 10)		Horizontal	2						
$\begin{aligned} & \text { U } \\ & \text { O} \end{aligned}$			Vertical	18						
Ш	Max. instantaneous power consumption [W] ${ }^{\text {Note 11) }}$			1275						
	Type Note 12)			Non-magnetizing lock						
	Holding force [N]			313	607	1146	2006	313	607	1146
	Power consumption [W] at $\mathbf{2 0}{ }^{\circ} \mathrm{C}$ Note 13)			7.9						
	Rated voltage [V]			$24 \mathrm{VDC}_{-10 \%}^{0}$						

Note 1) Please consult with SMC for non-standard strokes as they are produced as special orders.
Note 2) The maximum value of the horizontal work load. An external guide is necessary to support the load. The actual work load changes according to the condition of the external guide. Please confirm using actual device.
Note 3) The force setting range (set values for the driver) for the pushing operation with the torque control mode, etc. The pushing force and duty ratio change according to the set value. Set it with reference to "Force Conversion Graph (Guide)" on page 629.
Note 4) The allowable speed changes according to the stroke.
Note 5) The allowable collision speed for the pushing operation with the torque control mode, etc.
Note 6) A reference value for correcting an error in reciprocal operation.
Note 7) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 8) The work load conditions which require "Regeneration option" when operating at the maximum speed (Duty ratio: 100\%). Order the regeneration option separately. For details and order numbers, refer to "Required Conditions for Regeneration Option" on page 227.
Note 9) The power consumption (including the driver) is for when the actuator is operating.
Note 10) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation.
Note 11) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating.
Note 12) Only when motor option "With lock" is selected.
Note 13) For an actuator with lock, add the power consumption for the lock.

Weight

Product Weight									
	Series	LEY63 \square (Motor mounting position: Top/Parallel)							
Stroke [mm]		100	200	300	400	500	600	700	800
	Absolute encoder	5.4	6.6	8.3	9.4	10.5	12.2	13.4	14.5
Series		LEY63D $\square \square$ (Motor mounting position: In-line)							
Stroke [mm]		100	200	300	400	500	600	700	800
	Absolute encoder	5.6	6.7	8.4	9.6	10.7	12.4	13.5	14.7

Additional Weight		
Size 63 Lock Absolute encoder 0.4 Rod end male thread Male thread Nut 0.12		
Foot (2 sets including mounting bolt)		
Rod flange (including mounting bolt)		
Rouble clevis (including pin, retaining ring and mounting bolt)		
0.51		

Dimensions：Motor Top／Parallel

IP65 equivalent（Dust－tight／Water－jet－proof）：LEY63 $\square \square \square-\square \mathbf{P}$ （View ZZ）

＊When using the dust－tight／water－jet－proof（IP65 equiva－ lent），correctly mount the fitting and tubing to the vent hole tap，and then place the end of the tubing in an area not exposed to dust or water．The fitting and tubing should be provided separately by the customer．
Select［Applicable tubing O．D．：ø4 or more，Connection thread：Rc1／8］．

Size	Stroke range \qquad ［mm］	A	B	C	D	EH	EV	F	G	H	J	K	L	M	O1	R	S	T	U	Y	V
25	15 to 100	130.5	116	13	20	44	45.5	2	4	M8 x 1.25	24	17	14.5	34	M5 x 0.8	8	46	92	1	26.5	40
	105 to 400	155.5	141																		
32	20 to 100	148.5	130	13	25	51	56.5	2	4	M8 x 1.25	31	22	18.5	40	M6 x 1.0	10	60	118	1	34	60
	105 to 500	178.5	160																		
63	Up to 200	192.6	155.2	21	40	76	82	4	8	M16 x 2	44	36	37.4	60	M8 x 1.25	16	80	146	4	32.2	60
	205 to 500	227.6	190.2																		
	505 to 800	262.6	225.2																		

	出
	の
	$\stackrel{1}{4}$

Size	Stroke range ［mm］	Without lock			With lock		
		W	X	Z	W	X	Z
25	15 to 100	82.4	115.4	14.1	123	156	15.8
	105 to 400						
32	20 to 100	76.6	116.6	17.1	113.4	153.4	17.1
	105 to 500						
63	Up to 200	98.3	138.3	$\begin{gathered} 15.6 \\ (16.6) \end{gathered}$	135.1	175.1	$\begin{gathered} 15.6 \\ (16.6) \end{gathered}$
	205 to 500						
	505 to 800						

Body Bottom Tapped

Size	Stroke range ［ mm ］	MA	MB	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 35	20	46	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100			42	41						
	105 to 120						75				
	125 to 200			59	49.5						
	205 to 400			76	58						
32	20 to 35	25	55	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100			36	43						
	105 to 120			36			80				
	125 to 200			53	51.5						
	205 to 500			70	60						
63	50 to 70	38	52.2	24	50	44	65	M8 x 1.25	10	6	7
	75 to 120			45	60.5						
	125 to 200			58	67						
	205 to 500			86	81		100				
	505 to 800						135				

Series LEY

Dimensions: Motor Top/Parallel

Note) When the motor is mounted on the left or right side in parallel, the groove for auto switch on the side to which the motor is mounted is hidden.

* Refer to page 241 for details about the rod end nut and mounting bracket.
Note) Refer to the precautions on page 296 when mounting end brackets such as knuckle joint or workpieces.

Size	$\mathbf{B}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{H}_{\mathbf{1}}$	$\mathbf{L}_{\mathbf{1}}{ }^{*}$	$\mathbf{L}_{\mathbf{2}}$	MM
$\mathbf{2 5}$	22	20.5	8	38	23.5	$\mathrm{M} 14 \times 1.5$
$\mathbf{3 2}$	22	20.5	8	42.0	23.5	$\mathrm{M} 14 \times 1.5$
$\mathbf{6 3}$	27	26	11	76.4	39	$\mathrm{M} 18 \times 1.5$

* The L_{1} measurement is when the unit is in the Z-phase first detecting position. At this position, 2 mm at the end (size 25,32) and 4 mm at the end (size 63).

Size	Stroke range ［mm］	Without lock			With lock		
		A	W	Z	A	W	Z
25	15 to 100	233.4	82.4	14.6	274	123	16.3
	105 to 400	258.4			299		
32	20 to 100	251.1	76.6	17.1	287.9	113.4	17.1
	105 to 500	281.1			317.9		
63	Up to 200	326.4	98.3	8.1	363.2	135.1	8.1
	205 to 500	361.4			398.2		
	505 to 800	396.4			433.2		

IP65 equivalent（Dust－tight／Water－jet－proof）：LEY63D $\square \square-\square \mathbf{P}$ （View ZZ）

Body Bottom Tapped										［mm］
Size	Stroke range ［mm］	MA	MC	MD	MH	ML	MO	MR	XA	XB
25	15 to 35	20	24	32	29	50	M5 x 0.8	6.5	4	5
	40 to 100		42	41						
	105 to 120		42	41		75				
	125 to 200		59	49.5						
	205 to 400		76	58						
32	20 to 35	25	22	36	30	50	M6 x 1	8.5	5	6
	40 to 100			43						
	105 to 120		36			80				
	125 to 200		53	51.5						
	205 to 500		70	60						
63	50 to 70	38	24	50	44	65	M8 x 1.25	10	6	7
	75 to 120		45	60.5						
	125 to 200		58	67						
	205 to 500		86	81		100				
	505 to 800		86			135				

[^4]Select［Applicable tubing O．D．：$\varnothing 4$ or more，Connection thread：Rc1／8］．

Electric Actuator/
 Guide Rod Type

Series LEYG Leyg25,32
(E ©
There are changes in the How to Order, force conversion graph, specifications, weight and dimensions. Refer to page 290 and after for other details.
How to Order

5 Motor type *

Symbol	Type	Output [W]	Actuator size	Compatible driver
T6	AC servo motor	100	25	LECSS2-T5
	(Absolute encoder)			

* For motor type T6, the compatible driver part number suffix is T5.
6 Lead [mm]

Symbol	LEYG25	LEYG32*
A	12	$16(20)$
B	6	$8(10)$
C	3	$4(5)$

* The values shown in () are the lead for top mounting type. (Equivalent lead which includes the pulley ratio [1.25:1])

7 Stroke [mm]

$\mathbf{3 0}$	30
to	to
$\mathbf{3 0 0}$	300

* Refer to the applicable stroke table.
* There is a limit for mounting size 32 top mounting type and 50 mm stroke or less. Refer to the dimensions.

8 Motor option

Nil	Without option
B	With lock

* When "With lock" is selected for the top mounting type, the motor body will stick out of the end of the body for size 25 with strokes 30 mm or less. Check for interference with workpieces before selecting a model.

11 Cable length [m]

$\mathbf{N i l}$	Without cable
$\mathbf{2}$	2
$\mathbf{5}$	5
\mathbf{A}	10

Applicable Stroke Table

Model	Stroke $[\mathrm{mm}]$	30	50	100	150	200	250	300
LEYG25	\bullet	Manufacturable stroke range						
LEYG32	\bullet	20 to 300						

[^5]
$\stackrel{\sim}{3}$

12 Driver type

	Compatible driver	Power supply voltage［V］
Nil	Without driver	-
S2	LECSS2－T \square	200 to 240

＊When the driver type is selected，the cable is included． Select cable type and cable length．
Example）
S2S2 ：Standard cable（2 m）＋Driver（LECSS2）
S2 ：Standard cable（ 2 m ）
Nil ：Without cable and driver
（13）IO cable length $[\mathrm{m}]$＊

Nil	Without cable
\mathbf{H}	Without cable（Connector only）
$\mathbf{1}$	1.5

＊When＂Without driver＂is selected for driver type， only＂Nil：Without cable＂can be selected．
Refer to page 645 if I／O cable is required．
（Options are shown on page 645．）

Use of auto switches for the guide rod type LEYG series

Insert the auto switch from the front side with rod（plate）sticking out．
For the parts hidden behind the guide attachment（Rod stick out side），the auto switch cannot be fixed．
Please consult with SMC when using auto switch on the rod stick out side，as it is produced as a special order．

Compatible Driver

Driver type	
Series	SENETIIIH type
Applicable network	Absolute
Control encoder	22－bit encoder
Communication function	USB communication
Power supply voltage［V］	200 to 240 VAC $(50 / 60 \mathrm{~Hz})$
Reference page	Page 641

Series LEYG

AC Servo Motor

Force Conversion Graph

LEYG25 \square T6 (Motor mounting position: Top mounting, In-line)

LEYG32 \square T7 (Motor mounting position: Top mounting)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
20 or less	100	-
24	60	1.5

LEYG32DT7 (Motor mounting position: In-line)

Torque limit/Command value [\%]	Duty ratio [\%]	Continuous pushing time [minute]
20 or less	100	-
24	60	1.5

Specifications

Model			LEYG25 ${ }^{\text {M }}$（Top mounting）LEYG25MD（In－line）			LEYG32 ${ }_{\text {L }}^{\text {L }}$（Top mounting）			LEYG32 ${ }_{\text {L }}{ }^{\text {D }}$（In－line）		
Stroke［mm］${ }^{\text {Note 1）}}$			30，50，100，150，200，250， 300			30，50，100，200，250， 300			30，50，100，200，250， 300		
Work load［kg］		Horizontal ${ }^{\text {N0ie } 21}$	18	50	50	30	60	60	30	60	60
		Vertical	7	15	29	7	17	35	10	22	44
	Pushing force［ N ］${ }^{\text {Note } 3 \text { ）}}$ （Set value： 12 to 24\％）		65 to 131	127 to 255	242 to 485	79 to 157	154 to 308	294 to 588	98 to 197	192 to 385	368 to 736
	Max．speed［mm／s］		900	450	225	1200	600	300	1000	500	250
	Pushing speed［mm／	s］${ }^{\text {Note 4）}}$	35 or less			30 or less			30 or less		
	Max．acceleration／deceleration［mm／s ${ }^{2}$ ］		5000			5000					
	Positioning repeatability［mm］	Basic type	± 0.02			± 0.02					
		High precisiontype				± 0.01					
	Lost motion ${ }^{\text {Note } 5)}$ ［mm］	Basic type	0.1 or less								
		High precision type	0.05 or less								
	Lead［mm］（including pulley ratio） ImpactVibration resistance $\left[\mathrm{m} / \mathrm{s}^{2}\right]^{\text {Noie } 6)}$		12	6	3	20	10	5	16	8	4
			50／20			50／20					
	Actuation type		Ball screw＋Belt［1：1］／Ball screw			Ball screw＋Belt［1：1．25］			Ball screw		
	Guide type		Sliding bearing（LEYGロM），Ball bushing bearing（LEYG $\square \mathrm{L}$ ）								
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		5 to 40			（LEYGUM），Ball bushing bearing（LEYG－L） 5 to 40					
	Operating humidity range［\％RH］		90 or less（No condensation）			90 or less（No condensation）					
	Required conditions for ${ }^{\text {Noie7 }}$	Horizontal	8 or more	31 or more	Not required	15 or more	Not required	Not required	23 or more	Not required	Not required
	＂Regeneration option＂［kg］	Vertical	2 or more	1 or more	1 or more	4 or more	5 or more	9 or more	4 or more	5 or more	9 or more
$\stackrel{\square}{\square}$	Motor output／Size		$100 \mathrm{~W} / \square 40$			200 W／$\square 60$					
을	Motor type		AC servo motor（200 VAC）			AC servo motor（200 VAC）					
$\stackrel{\text { O}}{ }$	Encoder		Motor type T6，T7：Absolute 22－bit encoder（Resolution： 4194304 p／rev）								
\％	Power consumption［W］Note 8）	Horizontal	45			65			65		
\％		Vertical	145			175			175		
\bigcirc	Standby power consumption when operating［W］${ }^{\text {Note } 9}$	Horizontal	2			2			2		
¢		Vertical	8			8			8		
Max．instantaneous power consumption［W］${ }^{\text {V0ie }}$（1）			445			724			724		
${ }^{\circ}{ }^{\circ}{ }^{\circ}$ Type ${ }^{\text {Note }}$ 11）			Non－magnetizing lock			Non－magnetizing lock					
			131	255	485	157	308	588	197	385	736
皆：	Power consumption［W］at $20^{\circ} \mathrm{C}$ Note 12$)$ din Rated voltage［V］		6.3			7.9			7.9		
			$24 \mathrm{VDC}_{-10 \%}$								

Note 1）Please consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）The maximum value of the horizontal work load．An external guide is necessary to support the load．The actual work load changes according to the condition of the external guide．Please confirm using actual device．
Note 3）The force setting range（set values for the driver）for the pushing operation with the torque control mode，etc． Set it with reference to＂Force Conversion Graph＂on page 637.
Note 4）The allowable collision speed for the pushing operation with the torque control mode，etc．
Note 5）A reference value for correcting an error in reciprocal operation．
Note 6）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed

Weight

Weight：Top Mounting Type［kg］															
	Series	LEYG25M							LEYG32M						
	Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
	Absolute encoder	1.8	2.0	2.4	2.8	3.1	3.5	3.7	3.2	3.4	4.0	4.7	5.3	5.7	6.2
	Series	LEYG25L							LEYG32L						
	Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
	Absolute encoder	1.9	2.1	2.3	2.7	3.0	3.3	3.6	3.2	3.4	3.8	4.6	5.0	5.5	5.9

Weight：In－line Motor Type

	Series	LEYG25MD							LEYG32MD						
	Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
	Absolute encoder	1.9	2.1	2.4	2.8	3.1	3.5	3.7	3.2	3.4	4.0	4.7	5.3	5.8	6.2
	Series	LEYG25LD							LEYG32LD						
	Stroke［mm］	30	50	100	150	200	250	300	30	50	100	150	200	250	300
$\begin{array}{\|l\|} \hline \stackrel{\circ}{0} \\ \stackrel{0}{2} \\ \hline \end{array}$	Absolute encoder	1.9	2.1	2.3	2.8	3.0	3.3	3.6	3.2	3.4	3.8	4.6	5.0	5.5	5.9

Additional Weight

Size		$\mathbf{2 5}$	$\mathbf{~} \mathrm{kg}]$
Lock	Absolute encoder	0.3	0.7

Note 8）The power consumption（including the driver）is for when the actuator is operating．
Note 9）The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during the operation．
Note 10）The maximum instantaneous power consumption（including the driver）is for when the actuator is operating． Note 11）Only when motor option＂With lock＂is selected．
Note 12）For an actuator with lock，add the power consumption for the lock．

Weight：Top Mounting Type

SX－人37	S－37－Lt	S「37－ト1

Series LEYG

AC Servo Motor

Dimensions: Top Mounting

LEYG \square M, LEYG $\square \mathrm{L}$ Common

Dimensions: In-line Motor

AC Servo Motor Driver
 Absolute Type

Series LECSS-T (rsarmut Type)
C RoHS
How to Order

Driver type ${ }^{\circ}$

\mathbf{S}	SSCNET III/H type (For absolute encoder)

Power supply voltage ${ }^{\circ}$
-Compatible motor type

	Power supply voltage
2	200 to 240 VAC, $50 / 60 \mathrm{~Hz}$

Dimensions
LECSS2-T \square

Connector name	Description
CN1A	Front axis connector for SSCNET III/H
CN1B	Rear axis connector for SSCNET II/H
CN2	Encoder connector
CN3	I/O signal connector
CN4	Battery connector
CN5	USB communication connector
CN8	STO input signal connector
CNP1	Main circuit power supply connector
CNP2	Control circuit power supply connector
CNP3	Servo motor power connector

Dimensions				[mm
Model	W	L	D	M
LECSS2-T5	40	135	4	6
LECSS2-T7				
LECSS2-T8		170	5	

ac Servo Motor Driver Series LECSS－T

Specifications

Model		LECSS2－T5	LECSS2－T7	LECSS2－T8
Compatible motor capacity［W］		100	200	400
Compatible encoder		Absolute 22－bit encoder （Resolution： $4194304 \mathrm{p} / \mathrm{rev}$ ）		
Main power supply	Power voltage［V］	Three phase 200 to 240 VAC（50／60 Hz），Single phase 200 to 240 VAC（ $50 / 60 \mathrm{~Hz}$ ）		
	Allowable voltage fluctuation［V］	Three phase 170 to 264 VAC（50／60 Hz），Single phase 170 to 264 VAC（ $50 / 60 \mathrm{~Hz}$ ）		
	Rated current［A］	0.9	1.5	2.6
Control power supply	Control power supply voltage［V］	Single phase 200 to 240 VAC（ $50 / 60 \mathrm{~Hz}$ ）		
	Allowable voltage fluctuation［V］	Single phase 170 to 264 VAC		
	Rated current［A］	0.2		
Applicable Fieldbus protocol		SSCNET III／H（High－speed optical communication）		
Communication function		USB communication		
Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］		0 to 55 （No freezing）		
Operating humidity range［\％RH］		90 or less（No condensation）		
Storage temperature range［ ${ }^{\circ} \mathrm{C}$ ］		－20 to 65 （No freezing）		
Storage humidity range［\％RH］		90 or less（No condensation）		
Insulation resistance［M Ω ］		Between the housing and SG： 10 （500 VDC）		
Weight［g］		800		1000

Power Supply Wiring Example：LECSS2－T \square

For single phase 200 VAC

For three phase 200 VAC

Note）For single phase 200 to 240 VAC，power supply should be connected to L1 and L3 terminals，with nothing connected to L2．

Main Circuit Power Supply Connector：CNP1＊Accessory

Temmana name	Function	Details	
L1	Main circuit power supply	Connect the main circuit power supply． LECSS2：Single phase 200 to 240 VAC， $50 / 60 \mathrm{~Hz}$ Connection terminal：L1，L3 Three phase 200 to 240 VAC， $50 / 60 \mathrm{~Hz}$ Connection terminal：L1，L2，L3	
L2			
L3			
$\mathrm{N}(-)$		Do not connect．	
P3	Connect between P_{3} and P_{4} ．（Connected at time of shipping．）		
P4			

Control Circuit Power Supply Connector：CNP2＊Accessory

Series LECSS-T

Control Signal Wiring Example: LECSS2-T \square

For sink I/O interface

Options

Motor cable，Lock cable，Encoder cable（LECS \square common）

LE－CSM－$\square \square$ ：Motor cable

LE－CSB－$\square \square$ ：Lock cable

LE－CSE－$\square \square$ ：Encoder cable

I／O connector（Without cable，Connector only）

LE－CSN \mathbf{A}	
	Driver typed
A	LECSA \square, LECSC \square
B	LECSB \square
S	LECSS \square－S \square, LECSS2－T \square

LE－CSNA

LE－CSNS

[^6]Options

SSCNET III optical cable (LECSS \square-S \square, LECSS2-T \square)

I/O cable

A side
B side

Regeneration option (LECS \square common)

LEC-MR-RB- 12

Regeneration option typed

$\mathbf{0 3 2}$	Allowable regenerative power 30 W
$\mathbf{1 2}$	Allowable regenerative power 100 W

* Confirm regeneration option to be used in "Model Selection".

Dimensions [mm]

Model	LA	LB	LC	LD
LEC-MR-RB-032	30	119	99	1.6
LEC-MR-RB-12	40	169	149	2

* MR-RB \square manufactured by Mitsubishi Electric Corporation.
* LEC-CSNA-1: 10126-3000PE (connector)/10326-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item.
LEC-CSNB-1: 10150-3000PE (connector)/10350-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item.
LEC-CSNS-1: 10120-3000PE (connector)/10320-52F0-008 (shell kit) manufactured by Sumitomo 3M Limited or equivalent item.
* Conductor size: AWG24

Wiring

LEC-CSNA-1: Pin no. 1 to 26
LEC-CSNB-1: Pin no. 1 to 50
LEC-CSNS-1: Pin no. 1 to 20

Connector pin no.		Pair no. of wire	$\begin{gathered} \hline \begin{array}{c} \text { Insulation } \\ \text { color } \end{array} \\ \hline \end{gathered}$	Dot mark	Dot color
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{6} \\ & 4 \end{aligned}$	1	1	Orange	\square	Red
	2			\square	Black
	3	2	Light gray	-	Red
	4			\square	Black
	5	3	White	\square	Red
	6			\square	Black
	7	4	Yellow	\square	Red
	8			\square	Black
	9	5	Pink	\square	Red
	10			\square	Black
	11	6	Orange	-	Red
	12			■	Black
	13	7	Light gray	$\square \square$	Red
	14			■ \square	Black
	15	8	White	-	Red
	16			■■	Black
	17	9	Yellow	$\square \square$	Red
	18			-	Black

Connector pin no.		Pair no. of wire	Insulation color	Dot mark	Dot color
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{6} \\ & 4 \end{aligned}$	19	10	Pink	$\square \square$	Red
	20			$\square \square$	Black
	21	11	Orange	$\square \square \square$	Red
	22			■■■	Black
	23	12	Light gray	$\square \square \square$	Red
	24			- $=$ -	Black
	25	13	White	- $-\square$	Red
	26			-mm	Black
	27	14	Yellow	$\square \square \square$	Red
	28			■■■	Black
	29	15	Pink	$\square \square \square$	Red
	30			$\square \square \square$	Black
	31	16	Orange	$\square \square \square \square$	Red
	32			■■■■	Black
	33	17	Light gray	- \square -	Red
	34			-mmm	Black

$\begin{array}{\|l\|} \hline \text { Connector } \\ \text { pin no. } \end{array}$		Pair no. of wire	Insulation color	Dot mark	Dot color
$\begin{aligned} & \frac{0}{0} \\ & \frac{0}{60} \\ & 4 \end{aligned}$	35	18	White	-mmm	Red
	36			-mmm	Black
	37	19	Yellow	-mme	Red
	38			■■■■	Black
	39	20	Pink	- $\square \square$	Red
	40			-mmm	Black
	41	21	Orange	-■■■号	Red
	42			-■■■■	Black
	43	22	Light gray	-■■■■	Red
	44			-	Black
	45	23	White	-m■m■	Red
	46			-■■■■	Black
	47	24	Yellow	■■■■■	Red
	48			-	Black
	49	25	Pink	-■■mb	Red
	50			-■■■■	Black

Options

Setup software（MR Configurator2 ${ }^{\text {TM }}$ ）（LECSA，LECSB，LECSC，LECSS common）

Nil	Japanese version
E	English version
C	Chinese version

＊SW1DNC－MRC2－\square manufactured by Mitsubishi Electric Corporation． Refer to Mitsubishi Electric Corporation＇s website for operating environment and version upgrade information．
MR Configurator2 ${ }^{\text {TM }}$ is a registered trademark or trademark of Mitsubishi Electric Corporation．

Adjustment，waveform display，diagnostics，parameter read／write，and test operation can be performed upon a PC．
Compatible PC
When using setup software（MR Configurator2 ${ }^{\text {TM }}$ ），use an IBM PC／AT compatible PC that meets the following operating conditions．

Hardware Requirements

Equipment		Setup software（MR Configurator2 ${ }^{\text {TM }}$ ） LEC－MRC2 \square
$\begin{aligned} & \text { Note 1) 2) 3) } \\ & \text { 4) 5) 667) } 9 \text {) } \end{aligned}$PC	OS	Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 8$ Enterprise Operating System Microsoff ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 8 Pro Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 8$ Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Enterprise Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR 7}$ Ultimate Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 7 Professional Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ 7 Home Premium Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ Starter Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Enterprise Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Ultimate Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Business Operating System Microsoft ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Home Premium Operating System Microsoff ${ }^{\circledR}$ Windows Vista ${ }^{\circledR}$ Home Basic Operating System Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ XP Professional Operating System，Service Pack 2 or later Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR}$ XP Home Edition Operating System，Service Pack 2 or later Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 2000$ Professional Operating System，Service Pack 4 or later
	Available HD space	1 GB or more
	Communication interface	Use USB port．
Display		Resolution 1024×768 or more Must be capable of high color（16－bit）display． The connectable with the above PC
Keyboard		The connectable with the above PC
Mouse		The connectable with the above PC
Printer		The connectable with the above PC
USB cable ${ }^{\text {Note } 8)}$		LEC－MR－J3USB

Note 1）Before using a PC for setting LECSA point table method／program operation method，upgrade to version 1．18U（Japanese version）／ version 1．19V（English version）or later．Refer to Mitsubishi Electric Corporation＇s website for version upgrade information．
Note 2）Windows ${ }^{\circledR}$ and Windows Vista ${ }^{\circledR}$ are registered trademarks of Microsoft Corporation in the United States and other countries．
Note 3）On some PCs，setup software（MR Configurator2 ${ }^{\text {TM }}$ ）may not run properly．
Note 4）When Windows ${ }^{\circledR}$ XP or later is used，the following functions cannot be used．
－Windows Program Compatibility mode
Fast User Switching
－Remote Desktop
－Large Fonts Mode（Display property）
－DPI settings other than 96 DPI（Display property） －64－bit OSs are not supported，except for Microsoft ${ }^{\circledR}$ Windows ${ }^{\circledR} 7$ or later．
Note 5）When Windows ${ }^{\otimes 7}$ is used，the following functions cannot be used． －Windows XP Mode
－Windows Touch
Note 6）When using this software with Windows Vista ${ }^{\circledR}$ or later， log in as a user having USER authority or higher．
Note 7）When Windows ${ }^{\circledR} 8$ is used，the following functions cannot be used． －Hyper－V
－Modern UI style
Note 8）Order USB cable separately．
－This cable is compatible with the setup software （MR Configurator ${ }^{\text {TM }}$ ：LEC－MR－SETUP221D）．
Note 9）Using a PC for setting Windows ${ }^{\circledR} 8.1$ ，upgrade to version 1．25B or later．Refer to Mitsubishi Electric Corporation＇s website for version upgrade information．

Setup Software Compatible Driver

Compatible driver	Setup software	
	MR Configurator ${ }^{\text {TM }}$	MR Configurator2 ${ }^{\text {TM }}$
	LEC－MR－SETUP221■	LEC－MRC2 \square
LECSA	\bigcirc	\bigcirc
LECSB	\bigcirc	\bigcirc
LECSC	\bigcirc	\bigcirc
LECSS \square－S \square	\bigcirc	\bigcirc
LECSS2－T \square	－	\bigcirc

Series LECSS-T

Options

Battery (only for LECSS2-T \square)

LEC-MR - BAT6V1SET

* MR-BAT6V1SET manufactured by Mitsubishi Electric Corporation.

Battery for replacement.
Absolute position data is maintained by installing the battery to the driver.

USB cable (3 m)

LEC - MR - J3USB

* MR-J3USBCBL3M manufactured by Mitsubishi Electric Corporation.

Cable for connecting PC and driver when using the setup software (MR Configurator2 ${ }^{\text {TM }}$).
Do not use any cable other than this cable.

STO cable (3 m)

LEC - MR - D05UDL3M

* MR-D05UDL3M manufactured by Mitsubishi Electric Corporation.

Cable for connecting the driver and device, when using the safety function.
Do not use any cable other than this cable.

Note) The LEC-MR-BAT6V1SET is an assembled battery that uses lithium metal battery 2CR17335A. This battery is not applicable to UN regulation Dangerous Goods (Class 9). When transporting lithium metal batteries and devices with built-in lithium metal batteries by a method subject to UN regulations, it is necessary to apply measures according to the regulations stipulated in the United Nations Recommendations on the Transport of Dangerous Goods, the Technical Instructions (ICAO-TI) of the International Civil Aviation Organization (ICAO), and the International Maritime Dangerous Goods Code (IMDG CODE) of the International Maritime Organization (IMO). If a customer is transporting products such as shown above, it is necessary to confirm the latest regulations, or the laws and regulations of the country of transport on your own, in order to apply the proper measures. Please contact SMC sales representative for details.

AC Servo Motor Driver Series LECYM／LECYU

1AMECHATROLINK Compatible

Power supply voltage（V）
200 to 230 VAC
Motor capacity（W）
$100 / 200 / 400$

－Position control，speed control and torque control
can be used．
－Control encoder：Absolute 20－bit encoder
（Resolution： $1048576 \mathrm{p} / \mathrm{rev}$ ）

Series LECYM Page 755
－Applicable Fieldbus protocol：MMECHATROLINK－II
－Number of connectable drivers： 30 units （Transmission distance：Max． 50 m in total）

Series LECYU Page 755

－Applicable Fieldbus protocol：MMECHATROLINK－III
－Number of connectable drivers： 62 units （Transmission distance：Max． 75 m between stations）

Compatible Actuators

Slider Type
Ball screw drive Series LEFS

Rod Type		
Basic type Series LEY		
Size	Pushing force	Stroke
25	485	Up to 400
32	588	Up to 500
63	3343	Up to 800

Pages 653， 671
Belt drive
Series LEFB

Size	Max．work load ［kg］	Stroke ［mm］
$\mathbf{2 5}$	5	Up to 2000
$\mathbf{3 2}$	15	Up to 2500
$\mathbf{4 0}$	25	Up to 3000

n－line motor type
Series $L E Y \square D$

Size	Pushing force $[\mathrm{N}]$	Stroke ［mm］
$\mathbf{2 5}$	485	Up to 400
$\mathbf{3 2}$	736	Up to 500
$\mathbf{6 3}$	1910	Up to 800

Page 719

Guide rod type／ In－line motor type
Series LEYGロD

Size	Pushing force $[\mathrm{N}]$	Stroke $[\mathrm{mm}]$
$\mathbf{2 5}$	485	Up to 300
$\mathbf{3 2}$	736	

System Construction

Absolute encoder compatible Series LECYU

Provided by customer

Power supply
Single phase 200 to 230 VAC (5
Three phase 200 to 230 VAC (5
Provided by customer
External regenerative resistor Page 758

* If the external regenerative resistor is required, it should be provided by the customer.
For selection of the external regenerative resistor, refer to the compatible actuator catalog.

Motor cable Page 761
SEandard cable Robotic cable LE-CYM-S $\square \square-\square$ LE-CYM-R $\square \square-\square$ OMotor cable for lock option Page 761 Standard cable Robotic cable LE-CYB-S $\square \square-\square$ LE-CYB-R $\square \square-\square$

Electric actuator	
Slider type	High rigidity slider type
Series LEF	Series LEJ
	Rod type
	Series LEY/LEYG

Encoder cable Page 761	
Standard cable	Robotic cable
LE-CYE-SDI	LE-CYE-RDI

Driver

* Order USB cable (Part no.: LEC-JZ-CVUSB) separately to use this software.

د
-
د
F
$\stackrel{\text { ¢ }}{\text { ¢ }}$
N
س
¢
式
$\frac{3}{4}$

IMECHATROLINK Compatible AC Servo Motor Driver

Electric Actuator/Slider Type, Ball Screw Drive Series LEFS
Model Selection...... Page 653
How to Order Page 661
Specifications Page 662
Construction Page 663
Dimensions Page 664

Specific Product Precautions

Electric Actuator/
Slider Type, Belt Drive
Series LEFB

Model Selection...... Page 671
How to Order Page 677
Specifications Page 678
Construction Page 679
Dimensions Page 681

Page 687

Electric Actuator/
High Rigidity Slider Type, Ball Screw Drive Series LEJS
© Electric Actuator/
High Rigidity Slider Type, Belt Drive Series LEJB
Model Selection...... Page 691
How to Order Page 703
Specifications Page 704
Construction Page 705
Dimensions Page 706

Auto Switch ... Page 713
Specific Product Precautions .. Page 716Electric Actuator/Rod Type
Series LEY

O Electric Actuator/Guide Rod Type
Series LEYG

Auto Switch ... Page 748
Specific Product Precautions ... Page 750

©AC Servo Motor Driver Series LECYM/LECYU

Specifications Page 756
Power Supply Wiring Example Page 758
Control Signal Wiring Example Page 759
Options Page 761
Specific Product Precautions Page 765

Electric Actuators

AC Servo Motor

Ball Screw Drive Series LEFS

Belt Drive Series LEFB

AC Servo Motor Driver Series LECYM/LECYU

Series LEFS Page 661

Selection Procedure

Selection Example

Operating
conditions

Step 1
Check the work load-speed. <Speed-Work load graph> (Page 654) Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.
Selection example) The LEFS40V8B-200 is temporarily selected based on the graph shown on the right side.

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.
Cycle time:
T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3:
Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the motor type and load. The value below is recommended.

```
T4 = 0.05 [s]
```

Step 3 Check the guide moment.

Based on the above calculation result, the LEFS40V8B-200 is selected.

<Speed-Work load graph>
(LEFS40)

L : Stroke [mm]
\cdots (Operating condition)
V : Speed [mm/s]
... (Operating condition)
a1: Acceleration [mm/s²]
... (Operating condition)
a2: Deceleration $\left[\mathrm{mm} / \mathrm{s}^{2}\right.$]
... (Operating condition)
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating
at a constant speed
T3: Deceleration time [s]
Time from the beginning of the
constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed
＊The allowable speed is restricted depending on the stroke． Select it by referring to＂Allowable Stroke Speed＂below．

LEFS25／Ball Screw Drive

LEFS32／Ball Screw Drive

Horizontal

Vertical

Vertical

$\underset{\text { E }}{ }$

Allowable Stroke Speed

＂Regenerative resistor＂area

＊When using the actuator in the＂Regenerative resistor＂area，download the＂AC servo capacity selection program／SigmaJunmaSize＋＂from the SMC website． Then，calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor．
＊Regenerative resistor should be provided by the customer．

Applicable Motor／Driver

Model	Applicable model				
	Motor	Servopack（SMC driver）	$	$	LEFS25 \square
:---:					
SGMJV－01A3A					
SGDV－R90A11 \square（LECYM2－V5） SGDV－R90A21 \square（LECYU2－V5）					
LEFS32 \square	SGMJV－02A3A	SGDV－1R6A11 \square（LECYM2－V7）			
:---					
SGDV－1R6A21 \square（LECYU2－V7）	$	$			

Vertical

$\stackrel{\Im}{\underset{\sim}{3}}$

Series LEFS

Work Load-Acceleration/Deceleration Graph (Guide)

LEFS25 \square V6H/Ball Screw Drive

LEFS25 \square V6A/Ball Screw Drive

Horizontal

LEFS25 \square V6B/Ball Screw Drive

Horizontal

LEFS25 \square V6H/Ball Screw Drive

Vertical

LEFS25 \square V6A/Ball Screw Drive
Vertical

LEFS25 \square V6B/Ball Screw Drive

Vertical

Work Load－Acceleration／Deceleration Graph（Guide）

LEFS32 \square V7A／Ball Screw Drive

Horizontal

LEFS32■V7B／Ball Screw Drive

Horizontal

LEFS32 \square V7H／Ball Screw Drive

LEFS32 \square V7A／Ball Screw Drive

Vertical

LEFS32 \square V7B／Ball Screw Drive

Vertical

出
妾
$\xrightarrow{\text { ¢ }}$

Series LEFS

AC Servo Motor

Work Load-Acceleration/Deceleration Graph (Guide)

LEFS40■V8H/Ball Screw Drive

LEFS40 \square V8A/Ball Screw Drive

LEFS40■V8B/Ball Screw Drive
Horizontal

LEFS40■V8H/Ball Screw Drive

Vertical

LEFS40 \square V8A/Ball Screw Drive
Vertical

LEFS40■V8B/Ball Screw Drive

Vertical

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to "Calculation of Guide Load Factor" or the Electric Actuator Selection Software for confirmation, http://www.smcworld.com
Dynamic Allowable Moment

LAT3	Motorless	$\begin{aligned} & \text { LECYM } \\ & \text { LECYU } \end{aligned}$	LECSS-T	LECS \square	LEC \square	25A-	11-LEJS	11-LEFS	LEY-X5	LEH	LER	LEPY LEPS	$\begin{aligned} & \text { LES } \\ & \text { LESH } \end{aligned}$	$\begin{aligned} & \text { LEY } \\ & \text { LEYG } \end{aligned}$	LEM	LEL	LEJS LEJB	LEFS LEFB

Series LEFS

AC Servo Motor

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to "Calculation of Guide Load Factor" or the Electric Actuator Selection Software for confirmation, http://www.smcworld.com

Calculation of Guide Load Factor

1. Decide operating conditions.

Model: LEFS
Size: 25/32/40
Mounting orientation: Horizontal/Bottom/Wall/Vertical

Acceleration [mm/s²]: a
Work load [kg]: m
Work load center position [mm]: Xc/Yc/Zc
2. Select the target graph with reference to the model, size and mounting orientation.
3. Based on the acceleration and work load, obtain the overhang [mm]: Lx/Ly/Lz from the graph.
4. Calculate the load factor for each direction.

$$
\alpha \mathbf{x}=\mathbf{X c} / L x, \alpha y=Y c / L y, \alpha z=Z c / L z
$$

5. Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ and $\alpha \mathbf{z}$ is 1 or less.
$\alpha x+\alpha y+\alpha z \leq 1$
When 1 is exceeded, please consider a reduction of acceleration and work load, or a change of the work load center position and series.

Example

1. Operating conditions

Model: LEFS40
Size: 40
Mounting orientation: Horizontal
Acceleration [mm/s²]: 3000
Work load [kg]: 20
Work load center position [mm]: Xc=0,Yc=50,Zc=200
2. Select the graphs for horizontal of the LEFS40 on page 658.
3. $L x=\mathbf{2 5 0} \mathbf{m m}, L y=180 \mathrm{~mm}, L z=1000 \mathrm{~mm}$
4. The load factor for each direction can be obtained as follows.

$$
\begin{aligned}
& \alpha x=0 / 250=0 \\
& \alpha y=50 / 180=0.27 \\
& \alpha z=200 / 1000=0.2
\end{aligned}
$$

5. $\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha z=0.47 \leq 1$

Mounting orientation

Table Accuracy

Model	Traveling parallelism [mm] (Every 300 mm)	
	(1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
	0.05	0.03
LEFS32	0.05	0.03
LEFS40	0.05	0.03

Note) Traveling parallelism does not include the mounting surface accuracy.

Note 1) This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.
Note 2) Check the clearance and play of the guide separately.

Overhang Displacement Due to Table Clearance (Reference Value)

Basic type

High precision type

Electric Actuator/Slider Type Ball Screw Drive

Accuracy	
Nil	Basic type
H	High precision type

2 2 Size
25
32
40

3 Motor mounting position
Nil
In-line
R
R
Right side parallel

(4) Motor type

Symbol	Type	Output [W]	Size	Compatible driver
V6	AC servo motor (Absolute encoder)	100	25	LECYM2-V5/LECYU2-v5
V7		200	32	LECYM2-V7/LECYU2-V7
V8		400	40	LECYM2-V8/LECYU2-V8

(5) Lead [mm]

Symbol	LEFS25	LEFS32	LEFS40
\mathbf{H}	20	24	30
A	12	16	20
B	6	8	10

(6) St	mm]	7 Motor option		8 Cable type	
50	50	Nil	Without option	Nil	Without cable
to	to	B	With lock	S	Standard cable
1200	1200			R	Robotic cable (Flexible cable)

9 Actuator cable length [m]

Nil	Without cable
$\mathbf{3}$	3
$\mathbf{5}$	5
A	10
C	20

10 Driver type

Nil	Compatible driver	Power supply voltage $[\mathrm{V}]$
M2	LECYout driver	-
U2	LECYU2-V \square	200 to 230

11 I/O cable length $[\mathrm{m}] *$

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

* When "Without driver" is selected for driver type, only "Nil: Without cable" can be selected. Refer to page 762 if I/O cable is required. (Options are shown on page 762.)

Applicable Stroke Table

Model \quadStroke $\left[\begin{array}{ll}{[\mathrm{mm}]}\end{array}\right.$	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1100	1200
LEFS25	-	\bigcirc	\bigcirc	-	-	\bigcirc	-	\bigcirc	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LEFS32	-	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	-	-	-	\bigcirc	-	-	-	-	-	\bigcirc	-	\bigcirc	-	-	-
LEFS40	-	-	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc						

* Please consult with SMC for non-standard strokes as they are produced as special orders.

Compatible Driver

Driver type	1IMECHATROLINK-II type	IIMECHATROLINK-III type
Series	LECYM	LECYU
Applicable network	MECHATROLINK-II	MECHATROLINK-III
Control encoder	Absolute 20-bit encoder	
Communication device	USB communication, RS-422 communication	
Power supply voltage [V]	200 to 230 VAC ($50 / 60 \mathrm{~Hz}$)	
Reference page	Page 755	

Specifications
AC Servo Motor

Model				LEFS25 \square V6			LEFS32 \square V7			LEFS40 \square V8		
	Stroke［mm］${ }^{\text {Note 1）}}$			50 to 800			50 to 1000			150 to 1200		
	Work load［kg］Note 2）		Horizontal	10	20	20	30	40	45	30	50	60
			Vertical	4	8	15	5	10	20	7	15	30
	Note 3） Max．speed ［mm／s］	Stroke range	Up to 400	1500	900	450	1500	1000	500	1500	1000	500
			401 to 500	1200	720	360	1500	1000	500	1500	1000	500
			501 to 600	900	540	270	1200	800	400	1500	1000	500
			601 to 700	700	420	210	930	620	310	1410	940	470
			701 to 800	550	330	160	750	500	250	1140	760	380
			801 to 900	－	－	－	610	410	200	930	620	310
			901 to 1000	－	－	－	510	340	170	780	520	260
			1001 to 1100	－	－	－	－	－	－	500	440	220
			1101 to 1200	－	－	－	－	－	－	500	380	190
	Max．acceleration／deceleration［mm／s ${ }^{\text {2 }}$ ］			20000 （Refer to pages 655 to 657 for limit according to work load and duty ratio．）								
	Positioning repeatability ［mm］		Basic type	± 0.02								
			High precision type	± 0.01								
	Lost motion［mm］Note 4）		Basic type	0.1 or less								
			High precision type	0.05 or less								
	Lead［mm］			20	12	6	24	16	8	30	20	10
	Impact／Vibration resistance［m／s ${ }^{2}$ ］Note 5）			50／20								
	Actuation type			Ball screw（LEFS■），Ball screw＋Belt（LEFS $\square_{\mathrm{L}}^{\mathrm{R}}$ ）								
	Guide type			Linear guide								
	Operating temperature range［ ${ }^{\circ} \mathrm{C}$ ］			5 to 40								
	Operating humidity range［\％RH］			90 or less（No condensation）								
	Motor output／Size			$100 \mathrm{~W} / \square 40$			200 W／■60			400 W／$\square 60$		
	Motor type			AC servo motor（200 VAC）								
	Encoder			Absolute 20－bit encoder（Resolution： $1048576 \mathrm{p} / \mathrm{rev}$ ）								
	Power consumption［W］Note 6）		Horizontal	45			65			210		
			Vertical	145			175			230		
	Standby power consumption when operating［W］Note 7）		Horizontal	2			2			2		
			Vertical	8			8			18		
	Max．instantaneous power consumption［W］Note 8）			445			725			1275		
－¢ ¢	Type Note 9）			Non－magnetizing lock								
雱：	Holding force［N］			78	131	255	131	197	385	220	330	660
융：\％	Power consumption at $20^{\circ} \mathrm{C}$［W］${ }^{\text {Note 10）}}$			5.5			6			6		
－	Rated voltage［V］			24 VDC $\pm 10 \%$								

Note 1）Please consult with SMC for non－standard strokes as they are produced as special orders．
Note 2）For details，refer to＂Speed－Work Load Graph（Guide）＂on page 654.
Note 3）The allowable speed changes according to the stroke．
Note 4）A reference value for correcting an error in reciprocal operation．
Note 5）Impact resistance：No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．） Vibration resistance：No malfunction occurred in a test ranging between 45 to 2000 Hz ．Test was performed in both an axial direction and a
perpendicular direction to the lead screw．（Test was performed with the actuator in the initial state．）
Note 6）The power consumption（including the driver）is for when the actuator is operating．
Note 7）The standby power consumption when operating（including the driver）is for when the actuator is stopped in the set position during the operation． Note 8）The maximum instantaneous power consumption（including the driver）is for when the actuator is operating．
Note 9）Only when motor option＂With lock＂is selected．
Note 10）For an actuator with lock，add the power consumption for the lock．

Weight

Series	LEFS25 \square V6															
Stroke［mm］	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800
Product weight［kg］	2.06	2.20	2.34	2.50	2.62	2.75	2.90	3.05	3.18	3.30	3.46	3.60	3.74	3.88	4.02	4.20
Additional weight with lock［kg］	0.3															

Series	LEFS40 \square V8																			
Stroke［mm］	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1100	1200
Product weight［kg］	5.92	6.20	6.48	6.75	7.05	7.35	7.61	7.90	8.17	8.35	8.73	9.00	9.30	9.55	9.86	10.15	10.42	10.70	11.26	11.82
Additional weight with lock［kg］	0.7																			

Series LEFS

Construction

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Rail guide	-	
$\mathbf{3}$	Ball screw shaft	-	
$\mathbf{4}$	Ball screw nut	-	
$\mathbf{5}$	Table	Aluminum alloy	Anodized
$\mathbf{6}$	Blanking plate	Aluminum alloy	Anodized
$\mathbf{7}$	Seal band holder	Synthetic resin	
$\mathbf{8}$	Housing A	Aluminum die-cast	Coating
$\mathbf{9}$	Housing B	Aluminum die-cast	Coating
$\mathbf{1 0}$	Bearing stopper	Aluminum alloy	

No.	Description	Material	Note
$\mathbf{1 1}$	Motor mount	Aluminum alloy	Coating
$\mathbf{1 2}$	Coupling	-	
$\mathbf{1 3}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{1 4}$	Motor end cover	Aluminum alloy	Anodized
15	Motor	-	
16	Grommet	NBR	
$\mathbf{1 7}$	Band stopper	Stainless steel	
18	Dust seal band	Stainless steel	
19	Bearing	-	
20	Bearing	-	

Dimensions：In－line Motor
LEFS25

Motor option：With lock

Note 1）When mounting the actuator using the body mounting reference plane，set the height of the opposite surface or pin to be 3 mm or more because of round chamfering．（Recommended height 5 mm ）
Note 2）Distance within which the table can move when it returns to origin． Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 3）The Z－phase first detecting position from the stroke end of the motor side．

Dimensions

Dimensions								［m
Model	L		A	B	n	D	E	F
	Without lock	With lock						
LEFS25 $\square \square$－50 \square	339	379	56	160	4	－	－	20
LEFS25 $\square \square$－100 \square	389	429	106	210	4	－	－	
LEFS25 $\square \square$－150 \square	439	479	156	260	4	－	－	
LEFS25 $\square \square$－200 \square	489	529	206	310	6	2	240	
LEFS25 $\square \square$－250 \square	539	579	256	360	6	2	240	
LEFS25 $\square \square$－300 \square	589	629	306	410	8	3	360	
LEFS25 $\square \square$－350 \square	639	679	356	460	8	3	360	
LEFS25 $\square \square$－400 \square	689	729	406	510	8	3	360	
LEFS25 $\square \square$－450 \square	739	779	456	560	10	4	480	35
LEFS25 $\square \square-500 \square$	789	829	506	610	10	4	480	
LEFS25 $\square \square$－550 \square	839	879	556	660	12	5	600	
LEFS25 $\square \square-600 \square$	889	929	606	710	12	5	600	
LEFS25 $\square \square$－650 \square	939	979	656	760	12	5	600	
LEFS25 $\square \square$－700 \square	989	1029	706	810	14	6	720	
LEFS25 $\square \square$－750 \square	1039	1079	756	860	14	6	720	
LEFS25 $\square \square-800 \square$	1089	1129	806	910	16	7	840	

Series LEFS

Dimensions: In-line Motor
LEFS32

Motor option: With lock

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of round chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table.
Note 3) The Z-phase first detecting position from the stroke end of the motor side.

Dimensions							
Model	L		A	B	n	D	E
	Without lock	With lock					
LEFS32 $\square \square$-50 \square	391	421	56	180	4	-	-
LEFS32 $\square \square$-100 \square	441	471	106	230	4	-	-
LEFS32 $\square \square$-150 \square	491	521	156	280	4	-	-
LEFS32 $\square \square$-200 \square	541	571	206	330	6	2	300
LEFS32 $\square \square$-250 \square	591	621	256	380	6	2	300
LEFS32 $\square \square$-300 \square	641	671	306	430	6	2	300
LEFS32 $\square \square$-350 \square	691	721	356	480	8	3	450
LEFS32 $\square \square$-400 \square	741	771	406	530	8	3	450
LEFS32 $\square \square$-450 \square	791	821	456	580	8	3	450
LEFS32 $\square \square-500 \square$	841	871	506	630	10	4	600
LEFS32 $\square \square$-550 \square	891	921	556	680	10	4	600
LEFS32 $\square \square$-600 \square	941	971	606	730	10	4	600
LEFS32 $\square \square-650 \square$	991	1021	656	780	12	5	750
LEFS32 $\square \square$-700 \square	1041	1071	706	830	12	5	750
LEFS32 $\square \square$-750 \square	1091	1121	756	880	12	5	750
LEFS32 $\square \square$-800 \square	1141	1171	806	930	14	6	900
LEFS32 $\square \square$-850 \square	1191	1221	856	980	14	6	900
LEFS32 $\square \square$-900 \square	1241	1271	906	1030	14	6	900
LEFS32 $\square \square$-950 \square	1291	1321	956	1080	16	7	1050
LEFS32 $\square \square$-1000 \square	1341	1371	1006	1130	16	7	1050

Dimensions：In－line Motor

LEFS40

Motor option：With lock

Note 1）When mounting the actuator using the body mounting reference plane，set the height of the opposite surface or pin to be 3 mm or more because of round chamfering．（Recommended height 5 mm ）
Note 2）Distance within which the table can move when it returns to origin．Make sure a workpiece mounted on the table does not interfere with the workpieces and facilities around the table．
Note 3）The Z－phase first detecting position from the stroke end of the motor side．

Dimensions
［mm］

Model	L		A	B	n	D	E
	Without lock	With lock					
LEFS40 $\square \square$－150 \square	564.5	594.5	156	328	4	－	150
LEFS40 $\square \square$－200 \square	614.5	644.5	206	378	6	2	300
LEFS40 $\square \square$－250 \square	664.5	694.5	256	428	6	2	300
LEFS40 $\square \square$－300 \square	714.5	744.5	306	478	6	2	300
LEFS40 $\square \square$－350 \square	764.5	794.5	356	528	8	3	450
LEFS40 $\square \square$－400 \square	814.5	844.5	406	578	8	3	450
LEFS40 $\square \square$－450 \square	864.5	894.5	456	628	8	3	450
LEFS40 $\square \square$－500 \square	914.5	944.5	506	678	10	4	600
LEFS40 $\square \square$－550 \square	964.5	994.5	556	728	10	4	600
LEFS40 $\square \square$－600 \square	1014.5	1044.5	606	778	10	4	600
LEFS40 $\square \square$－650 \square	1064.5	1094.5	656	828	12	5	750
LEFS40 $\square \square$－700 \square	1114.5	1144.5	706	878	12	5	750
LEFS40 $\square \square$－750 \square	1164.5	1194.5	756	928	12	5	750
LEFS40 $\square \square$－800 \square	1214.5	1144.5	806	978	14	6	900
LEFS40 $\square \square$－850 \square	1264.5	1294.5	856	1028	14	6	900
LEFS40 $\square \square$－900 \square	1314.5	1344.5	906	1078	14	6	900
LEFS40 $\square \square$－950 \square	1364.5	1394.5	956	1128	16	7	1050
LEFS40 \square－1000 \square	1414.5	1444.5	1006	1178	16	7	1050
LEFS40 $\square \square$－1100 \square	1514.5	1544.5	1106	1278	18	8	1200
LEFS40 $\square \square$－1200 \square	1614.5	1644.5	1206	1378	18	8	1200

Series LEFS

AC Servo Motor

Dimensions: Motor Parallel

LEFS25R

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)
Note 2) The Z-phase first detecting position from the stroke end of the motor side. Please consult with SMC for adjusting the Z-phase detecting position at the stroke end of the end side.

Motor Dimensions				
Motor type	X		Without lock	With lock
	With lock	Without lock	With lock	
V6	112	157	82.5	127.5

Dimensions

Dimensions							[mm
Model	L	A	B	n	D	E	F
LEFS25 $\square \square \square$-50 \square	210.5	56	160	4	-	-	20
LEFS25 $\square \square \square$-100 \square	260.5	106	210	4	-	-	35
LEFS25 $\square \square \square$-150 \square	310.5	156	260	4	-	-	
LEFS25 $\square \square \square$-200 \square	360.5	206	310	6	2	240	
LEFS25 $\square \square \square$-250 \square	410.5	256	360	6	2	240	
LEFS25 $\square \square \square$-300 \square	460.5	306	410	8	3	360	
LEFS25 $\square \square \square$-350 \square	510.5	356	460	8	3	360	
LEFS25 $\square \square \square-400 \square$	560.5	406	510	8	3	360	
LEFS25 $\square \square \square$-450 \square	610.5	456	560	10	4	480	
LEFS25 $\square \square \square$-500 \square	660.5	506	610	10	4	480	
LEFS25 $\square \square \square$-550 \square	710.5	556	660	12	5	600	
LEFS25 $\square \square \square$-600 \square	760.5	606	710	12	5	600	
LEFS25 $\square \square \square$-650 \square	810.5	656	760	12	5	600	
LEFS25 $\square \square \square$-700 \square	860.5	706	810	14	6	720	
LEFS25 $\square \square \square$-750 \square	910.5	756	860	14	6	720	
LEFS25 $\square \square \square$-800 \square	960.5	806	910	16	7	840	

Dimensions：Motor Parallel

LEFS32R

Dimensions

Note 1）When mounting the actuator using the body mounting reference plane，set the height of the opposite surface or pin to be 3 mm or more． （Recommended height 5 mm ）
Note 2）The Z－phase first detecting position from the stroke end of the motor side．Please consult with SMC for adjusting the Z－phase detecting position at the stroke end of the end side．

Motor Dimensions					$\quad[\mathrm{mm}]$	
Motor type	Without lock	With lock	Without lock	With lock	Without lock	
With lock						
V7	113.5	153.5	80	120	14	

Dimensions						［mm］
Model	L	A	B	n	D	E
LEFS32 $\square \square \square-50 \square$	245	56	180	4	－	－
LEFS32 $\square \square \square-100 \square$	295	106	230	4	－	－
LEFS32 $\square \square \square$－150 \square	345	156	280	4	－	－
LEFS32 $\square \square \square$－200 \square	395	206	330	6	2	300
LEFS32 $\square \square \square$－250 \square	445	256	380	6	2	300
LEFS32 $\square \square \square$－300 \square	495	306	430	6	2	300
LEFS32 $\square \square \square$－350 \square	545	356	480	8	3	450
LEFS32 $\square \square \square$－400 \square	595	406	530	8	3	450
LEFS32 $\square \square \square$－450 \square	645	456	580	8	3	450
LEFS32 $\square \square \square-500 \square$	695	506	630	10	4	600
LEFS32 $\square \square \square-550 \square$	745	556	680	10	4	600
LEFS32 $\square \square \square$－600 \square	795	606	730	10	4	600
LEFS32 $\square \square \square-650 \square$	845	656	780	12	5	750
LEFS32 $\square \square \square$－700 \square	895	706	830	12	5	750
LEFS32 $\square \square \square$－750 \square	945	756	880	12	5	750
LEFS32 $\square \square \square$－800 \square	995	806	930	14	6	900
LEFS32 $\square \square \square$－850 \square	1045	856	980	14	6	900
LEFS32 $\square \square \square$－900 \square	1095	906	1030	14	6	900
LEFS32 $\square \square \square$－950 \square	1145	956	1080	16	7	1050
LEFS32 $\square \square \square$－1000 \square	1195	1006	1130	16	7	1050

Series LEFS

AC Servo Motor

Dimensions: Motor Parallel

LEFS40R

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more. (Recommended height 5 mm)
Note 2) The Z-phase first detecting position from the stroke end of the motor side. Please consult with SMC for adjusting the Z-phase detecting position at the stroke end of the end side.

Dimensions
[mm]

Model	L	A	B	n	D	E
LEFS40 $\square \square \square$-150 \square	403.4	156	328	4	-	150
LEFS40 $\square \square \square$-200 \square	453.4	206	378	6	2	300
LEFS40 $\square \square \square$-250 \square	503.4	256	428	6	2	300
LEFS40 $\square \square \square$-300 \square	553.4	306	478	6	2	300
LEFS40 $\square \square \square$-350 \square	603.4	356	528	8	3	450
LEFS40 $\square \square \square-400 \square$	653.4	406	578	8	3	450
LEFS40 $\square \square \square$-450 \square	703.4	456	628	8	3	450
LEFS40 $\square \square \square-500 \square$	753.4	506	678	10	4	600
LEFS40 $\square \square \square-550 \square$	803.4	556	728	10	4	600
LEFS40 $\square \square \square-600 \square$	853.4	606	778	10	4	600
LEFS40 $\square \square \square$-650 \square	903.4	656	828	12	5	750
LEFS40 $\square \square \square$-700 \square	953.4	706	878	12	5	750
LEFS40 $\square \square \square$-750 \square	1003.4	756	928	12	5	750
LEFS40 $\square \square \square$-800 \square	1053.4	806	978	14	6	900
LEFS40 $\square \square \square$-850 \square	1103.4	856	1028	14	6	900
LEFS40 $\square \square \square$-900 \square	1153.4	906	1078	14	6	900
LEFS40 $\square \square \square$-950 \square	1203.4	956	1128	16	7	1050
LEFS40 $\square \square \square$-1000 \square	1253.4	1006	1178	16	7	1050
LEFS40 $\square \square \square$-1100 \square	1353.4	1106	1278	18	8	1200
LEFS40 $\square \square \square$-1200 \square	1453.4	1206	1378	18	8	1200

AC Servo Motor

Electric Actuator/Slider Type

Belt Drive/Series LEFB
Model Selection

Series LEFB Page 677

Selection Procedure

Selection Example

Operating conditions

- Workpiece mass: 20 [kg]
-Speed: 1500 [mm/s]
- Acceleration/Deceleration: 3000 [mm/s²]
- Stroke: 2000 [mm]
\bullet Mounting position: Horizontal upward

Step 1 Check the work load-speed. <Speed-Work load graph> (Page 672) Select the target model based on the workpiece mass and speed with reference to the <Speed-Work load graph>.

Selection example) The LEFB40V8S-2000 is temporarily selected based on the graph shown on the right side.

Step 2 Check the cycle time.

Calculate the cycle time using the following calculation method.
Cycle time:
T can be found from the following equation.

$$
\mathrm{T}=\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4[\mathrm{~s}]
$$

-T1: Acceleration time and T3: Deceleration time can be obtained by the following equation.

$$
\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1[\mathrm{~s}] \quad \mathrm{T} 3=\mathrm{V} / \mathrm{a} 2[\mathrm{~s}]
$$

-T2: Constant speed time can be found from the following equation.

$$
\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}[\mathrm{~s}]
$$

-T4: Settling time varies depending on the motor type and load. The value below is recommended.

T4 $=0.05$ [s]

Calculation example)
T 1 to T 4 can be calculated as follows.
$\mathrm{T} 1=\mathrm{V} / \mathrm{a} 1=1500 / 3000=0.5[\mathrm{~s}]$,
$\mathrm{T} 3=\mathrm{V} / \mathrm{a} 2=1500 / 3000=0.5[\mathrm{~s}]$
$\mathrm{T} 2=\frac{\mathrm{L}-0.5 \cdot \mathrm{~V} \cdot(\mathrm{~T} 1+\mathrm{T} 3)}{\mathrm{V}}$
$=\frac{2000-0.5 \cdot 1500 \cdot(0.5+0.5)}{1500}$
$=0.83$ [s]
$\mathrm{T} 4=0.05$ [s]
Therefore, the cycle time can be obtained as follows.

$$
\begin{aligned}
\mathrm{T} & =\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3+\mathrm{T} 4 \\
& =0.5+0.83+0.5+0.05 \\
& =1.88[\mathrm{~s}]
\end{aligned}
$$

Step 3 Check the guide moment.

Based on the above calculation result, the LEFB40V8S-2000 is selected.

<Speed-Work load graph>
(LEFB40)

L: Stroke [mm]
... (Operating condition)
V : Speed [mm/s]
... (Operating condition)
a1: Acceleration [$\mathrm{mm} / \mathrm{s}^{2}$]
... (Operating condition)
a2: Deceleration [mm/s²]
... (Operating condition)
T1: Acceleration time [s]
Time until reaching the set speed
T2: Constant speed time [s]
Time while the actuator is operating
at a constant speed
T3: Deceleration time [s]
Time from the beginning of the constant speed operation to stop
T4: Settling time [s]
Time until positioning is completed

Speed－Work Load Graph（Guide）

LEFB $\square / B e l t$ Drive

Cycle Time Graph（Guide）

LEFB $\square / B e l t$ Drive

LEFB25／32／40

＊Cycle time is for when maximum speed．
＊Maximum stroke：LEFB25： 2000 mm
LEFB32： 2500 mm
LEFB40： 3000 mm

＂Regenerative resistor＂area

＊When using the actuator in the＂Regenerative resistor＂area，download the＂AC servo capacity selection program／SigmaJunmaSize＋＂from the SMC website． Then，calculate the necessary regenerative resistor capacity to prepare an appropriate external regenerative resistor．
＊Regenerative resistor should be provided by the customer．

Work Load－Acceleration／Deceleration Graph（Guide）

LEFB \square／Belt Drive

LEFB25 \square V6（Duty ratio）

LEFB32 \square V7（Duty ratio）

LEFB40 \square V8（Duty ratio）

Applicable Motor／Driver

$\left.$| Model | Applicable model | |
| :---: | :---: | :---: |
| | Motor | Servopack（SMC driver） |\(\left|\begin{array}{c}SGFB25 \square

SGMJV－01A3A

SGDV－R90A11 \square （LECYM2－V5）

SGDV－R90A21 \square （LECYU2－V5）\end{array}\right|\)| SGDV－1R6A11 \square（LECYM2－V7） |
| :--- |
| SGDV－1R6A21 \square（LECYU2－V7） | \right\rvert\, | SGDV－2R8A11 \square（LECYM2－V8） |
| :--- |
| SGDV－2R8A21 \square（LECYU2－V8） |

Series LEFB

AC Servo Motor

Dynamic Allowable Moment

* This graph shows the amount of allowable overhang (guide unit) when the center of gravity of the workpiece overhangs in one direction. When selecting the overhang, refer to "Calculation of Guide Load Factor" or the Electric Actuator Selection Software for confirmation, http://www.smcworld.com

$\begin{array}{\|l\|} \hline \frac{}{ㅇ} \\ \stackrel{1}{\pi} \end{array}$	Load overhanging direction m : Work load [kg] Me: Dynamic allowable moment [$\mathrm{N} \cdot \mathrm{m}$] L : Overhang to the work load center of gravity [mm]		Model		
$\begin{gathered} \overline{\mathrm{N}} \\ \hline \mathrm{O} \end{gathered}$			LEFB25■V6	LEFB32 \square V7	LEFB40 \square V
		X			
		Y			
		Z			
$\overline{\bar{\pi}}$		X			
		Y			
		Z			

Calculation of Guide Load Factor

1．Decide operating conditions．
Model：LEFB
Acceleration［mm／s²］：a
Size：25／32／40
Mounting orientation：Horizontal／Bottom／Wall／Vertical
Work load［kg］：m
Work load center position［mm］：Xc／Yc／Zc
2．Select the target graph with reference to the model，size and mounting orientation．
3．Based on the acceleration and work load，obtain the overhang［mm］：Lx／Ly／Lz from the graph．
4．Calculate the load factor for each direction．

$$
\alpha \mathbf{x}=\mathrm{Xc} / \mathrm{Lx}, \alpha \mathbf{y}=\mathrm{Yc} / \mathrm{Ly}, \alpha \mathbf{z}=\mathrm{Zc} / \mathrm{Lz}
$$

5．Confirm the total of $\alpha \mathbf{x}, \alpha \mathbf{y}$ and $\alpha \mathbf{z}$ is 1 or less．

$$
\alpha x+\alpha y+\alpha z \leq 1
$$

When 1 is exceeded，please consider a reduction of acceleration and work load，or a
change of the work load center position and series．

Example

1．Operating conditions
Model：LEFB40
Size： 40
Mounting orientation：Horizontal
Acceleration［mm／s²］： 3000
Work load［kg］： 20
Work load center position［mm］：Xc＝0，Yc＝50，Zc＝ 200
2．Select the graphs for horizontal of the LEFB40 on page 673.

3． $\mathrm{Lx}=\mathbf{2 5 0} \mathbf{~ m m}, \mathrm{Ly}=180 \mathrm{~mm}, \mathrm{Lz}=1000 \mathrm{~mm}$
4．The load factor for each direction can be obtained as follows．

$$
\begin{aligned}
& \alpha x=0 / 250=0 \\
& \alpha y=50 / 180=0.27 \\
& \alpha z=200 / 1000=0.2
\end{aligned}
$$

5．$\alpha \mathbf{x}+\alpha \mathbf{y}+\alpha z=0.47 \leq 1$

Series LEFB

Table Accuracy

Model	Traveling parallelism [mm] (Every 300 mm)	
	1) C side traveling parallelism to A side	(2) D side traveling parallelism to B side
	0.05	0.03
LEFB32	0.05	0.03
LEFB40	0.05	0.03

Note) Traveling parallelism does not include the mounting surface accuracy.

Table Displacement (Reference Value)

Note 1) This displacement is measured when a 15 mm aluminum plate is mounted and fixed on the table.
Note 2) Check the clearance and play of the guide separately.

Overhang Displacement Due to Table Clearance (Reference Value)

Basic type

High precision type

Electric Actuator/Slider Type Belt Drive

Series LEFB LEFB25, 32, 40
RoHS

How to Order

1 Size
25
32
40

Nil Top mounting U Bottom mounting
3 Motor type

Symbol	Type	Output [W]	Size	Compatible driver
V6	AC servo motor	100	25	LECYM2-V5/LECYU2-V5
	V7	(Absolute encoder)	200	32
LECYM2-V7/LECYU2-V7				
	V8	400	40	LECYM2-V8/LECYU2-V8

Equivalent lead [mm] | S | 54 |
| :--- | :--- |

(5) Strok		[mm]
300	300	
to	to	
3000	3000	

6 Motor option

Nil	Without option
B	With lock

7 Cable type

Nil	Without cable
\mathbf{S}	Standard cable
\mathbf{R}	Robotic cable (Flexible cable)

Actuator cable length
length

Nil	Without cable
$\mathbf{3}$	3
$\mathbf{5}$	5
A	10
\mathbf{C}	20

Driver type

	Compatible driver	Power supply voltage [V]
Nil	Without driver	-
M2	LECYM2-V \square	200 to 230
U2	LECYU2-V \square	200 to 230

10 I/O cable length [m] *

Nil	Without cable
\mathbf{H}	Without cable (Connector only)
$\mathbf{1}$	1.5

* When "Without driver" is selected for driver type, only "Nil: Without cable" can be selected. Refer to page 762 if I/O cable is required. (Options are shown on page 762.)

Applicable Stroke Table

- Standard/ \bigcirc : Produced upon receipt of order

	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500	3000	Manufacturable stroke range [mm]
LEFB25	-	-	-	-	-	-	-	-	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	300 to 2000
LEFB32	-	\bigcirc	-	-	-	-	-	-	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	-	-	300 to 2500
LEFB40	-	-	-	-	\bullet	\bullet	\bullet	-	\bigcirc	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bullet	\bullet	-	300 to 3000

* Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.

Compatible Driver

Electric Actuator/Slider Type
 Belt Drive

Specifications

AC Servo Motor

Model			LEFB25V6	LEFB32V 7	LEFB40V8
n000000000000000	Stroke [mm] Note 1)		$\begin{gathered} 300,400,500 \\ 600,700,800 \\ 900,1000,(1100) \\ 1200,(1300,1400) \\ 1500,(1600,1700) \\ (1800,1900), 2000 \end{gathered}$	$300,400,500$ $600,700,800$ $900,1000,(1100)$ $1200,(1300,1400)$ $1500,(1600,1700)$ $(1800,1900), 2000$ 2500	$300,400,500$ $600,700,800$ $900,1000,(1100)$ $1200,(1300,1400)$ $1500,(1600,1700)$ $(1800,1900), 2000$ 2500,3000
	Work load [kg] ${ }^{\text {Note 2) }}$	Horizontal	5	15	25
	Max. speed [mm/s]		2000	2000	2000
	Max. acceleration/deceleration [mm/s ${ }^{2}$]		20000 (Refer to page 672 for limit according to work load and duty ratio.) Note 3)		
	Positioning repeatability [mm]		± 0.06		
	Lost motion [mm] Note 4)		0.1 or less		
	Equivalent lead [mm]		54		
	Impact/Vibration resistance [m/s ${ }^{2}$] Note 5)		50/20		
	Actuation type		Belt		
	Guide type		Linear guide		
	Operating temperature range [${ }^{\circ} \mathrm{C}$]		5 to 40		
	Operating humidity range [\%RH]		90 or less (No condensation)		
	Motor output/Size		$100 \mathrm{~W} / \square 40$	200 W/ $\square 60$	400 W/ $\square 60$
	Motor type		AC servo motor (200 VAC)		
	Encoder		Absolute 20-bit encoder (Resolution: $1048576 \mathrm{p} / \mathrm{rev}$)		
	Power consumption [W] Note 6)	Horizontal	29	41	72
		Vertical	-	-	-
	Standby power consumption when operating [W] Note 7)	Horizontal	2	2	2
		Vertical	-	-	-
	Max. instantaneous power consumption [W] Note 8)		445	725	1275
	Type Note 9)		Non-magnetizing lock		
	Holding force [N]		27	54	110
	Power consumption at $20^{\circ} \mathrm{C}$ [W] Note 10)		5.5	6.0	6.0
	Rated voltage [V]		24 VDC $^{-10 \%}$		

Note 1) Please consult with SMC as all non-standard and non-made-to-order strokes are produced as special orders.
Note 2) For details, refer to "Speed-Work Load Graph (Guide)" on page 672.
Note 3) Maximum acceleration/deceleration changes according to the work load. Check "Work Load-Acceleration/Deceleration Graph (Guide)" of the catalog.
Note 4) A reference value for correcting an error in reciprocal operation.
Note 5) Impact resistance: No malfunction occurred when the actuator was tested with a drop tester in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Vibration resistance: No malfunction occurred in a test ranging between 45 to 2000 Hz . Test was performed in both an axial direction and a perpendicular direction to the lead screw. (Test was performed with the actuator in the initial state.)
Note 6) The power consumption (including the driver) is for when the actuator is operating.
Note 7) The standby power consumption when operating (including the driver) is for when the actuator is stopped in the set position during the operation. Note 8) The maximum instantaneous power consumption (including the driver) is for when the actuator is operating
Note 9) Only when motor option "With lock" is selected.
Note 10) For an actuator with lock, add the power consumption for the lock.

Weight

Series	LEFB25																	
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000
Product weight [kg]	3.06	3.31	3.56	3.81	4.06	4.31	4.56	4.81	5.06	5.31	5.56	5.81	6.06	6.31	6.56	6.81	7.06	7.31
Additional weight with lock [kg]	0.3																	

Series	LEFB32																		
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500
Product weight [kg]	4.90	5.25	5.60	5.95	6.30	6.65	7.00	7.35	7.70	8.05	8.40	8.75	9.10	9.45	9.80	10.15	10.50	10.85	12.60
Additional weight with lock [kg]										0.7									

Series	LEFB40																			
Stroke [mm]	300	400	500	600	700	800	900	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2500	3000
Product weight [kg]	7.20	7.65	8.10	8.55	9.00	9.45	9.90	10.35	10.80	11.25	11.70	12.15	12.60	13.05	13.50	13.95	14.40	14.85	17.10	19.35
Additional weight with lock [kg]	0.7																			

Series LEFB

Construction

LEFB25V6S

* Motor bottom mounting type is the same.

Component Parts

No.	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Rail guide		
$\mathbf{3}$	Belt	Carbon steel	Chromating
4	Belt holder	Aluminum alloy	Anodized
$\mathbf{5}$	Belt stopper	Aluminum alloy	Anodized
6	Table	Aluminum alloy	Anodized
$\mathbf{7}$	Blanking plate	Synthetic resin	
$\mathbf{8}$	Seal band holder	Aluminum die-cast	Coating
9	Housing A	Aluminum alloy	
$\mathbf{1 0}$	Pulley holder	Stainless steel	
$\mathbf{1 1}$	Pulley shaft	Aluminum alloy	Anodized
$\mathbf{1 2}$	End pulley	Aluminum alloy	Anodized
$\mathbf{1 3}$	Motor pulley	Aluminum alloy	Coating
$\mathbf{1 4}$	Return flange		

No.	Description	Material	Note
$\mathbf{1 5}$	Housing	Aluminum alloy	Coating
$\mathbf{1 6}$	Motor mount	Aluminum alloy	Coating
$\mathbf{1 7}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{1 8}$	Motor end cover	Aluminum alloy	Anodized
$\mathbf{1 9}$	Band stopper	Stainless steel	
$\mathbf{2 0}$	Motor		
$\mathbf{2 1}$	Rubber bushing	NBR	
$\mathbf{2 2}$	Stopper	Aluminum alloy	
$\mathbf{2 3}$	Dust seal band	Stainless steel	
24	Bearing		
25	Bearing		
26	Spacer	Aluminum alloy	
27	Tension adjustment cap screw	Chromium molybdenum steel	Chromating
28	Pulley retaining screw	Chromium molybdenum steel	Chromating

Electric Actuator／Slider Type Belt Drive

Construction
LEFB32／40V \square S

＊Motor bottom mounting type is the same．

Component Parts

No．	Description	Material	Note
$\mathbf{1}$	Body	Aluminum alloy	Anodized
$\mathbf{2}$	Rail guide		
$\mathbf{3}$	Belt	Carbon steel	Chromating
4	Belt holder	Aluminum alloy	Anodized
5	Belt stopper	Aluminum alloy	Anodized
6	Table	Aluminum alloy	Anodized
$\mathbf{7}$	Blanking plate	Synthetic resin	
$\mathbf{8}$	Seal band stopper	Aluminum alloy	Coating
9	End block		
$\mathbf{1 0}$	End block cover	Aluminum alloy	
$\mathbf{1 1}$	Pulley holder	Stainless steel	
$\mathbf{1 2}$	Pulley shaft	Aluminum alloy	Anodized
$\mathbf{1 3}$	End pulley	Aluminum alloy	Anodized
$\mathbf{1 4}$	Motor pulley		

No．	Description	Material	Note
$\mathbf{1 5}$	Return flange	Aluminum alloy	Coating
$\mathbf{1 6}$	Housing	Aluminum alloy	Coating
$\mathbf{1 7}$	Motor mount	Aluminum alloy	Coating
$\mathbf{1 8}$	Motor cover	Aluminum alloy	Anodized
$\mathbf{1 9}$	Motor end cover	Aluminum alloy	Anodized
$\mathbf{2 0}$	Band stopper	Stainless steel	
$\mathbf{2 1}$	Motor		
$\mathbf{2 2}$	Rubber bushing	NBR	
$\mathbf{2 3}$	Dust seal band	Stainless steel	
24	Bearing		
25	Bearing		
26	Bearing		
27	Tension adjustment bolt	Chromium molybdenum steel	Chromating

Series LEFB

AC Servo Motor

Dimensions: Belt Drive

LEFB25/Motor top mounting type

Motor option: With lock

Dimensions						
Stroke	\mathbf{L}	A	B	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	552	306	467	6	2	340
400	652	406	567	8	3	510
500	752	506	667	8	3	510
600	852	606	767	10	4	680
700	952	706	867	10	4	680
800	1052	806	967	12	5	850
900	1152	906	1067	14	6	1020
1000	1252	1006	1167	14	6	1020
1100	1352	1106	1267	16	7	1190
1200	1452	1206	1367	16	7	1190
1300	1552	1306	1467	18	8	1360
1400	1652	1406	1567	20	9	1530
1500	1752	1506	1667	20	9	1530
1600	1852	1606	1767	22	10	1700
1700	1952	1706	1867	22	10	1700
1800	2052	1806	1967	24	11	1870
1900	2152	1906	2067	24	11	1870
2000	2252	2006	2167	26	12	2040

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of round chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the work pieces and facilities around the table.
Note 3) The Z-phase first detecting position from the stroke end of the motor side

Dimensions：Belt Drive

LEFB25U／Motor bottom mounting type

Motor option：With lock

Dimensions						
Stroke	\mathbf{L}	A	B	n	\mathbf{D}	E
300	552	306	467	6	2	340
400	652	406	567	8	3	510
500	752	506	667	8	3	510
600	852	606	767	10	4	680
700	952	706	867	10	4	680
800	1052	806	967	12	5	850
900	1152	906	1067	14	6	1020
1000	1252	1006	1167	14	6	1020
1100	1352	1106	1267	16	7	1190
1200	1452	1206	1367	16	7	1190
1300	1552	1306	1467	18	8	1360
1400	1652	1406	1567	20	9	1530
1500	1752	1506	1667	20	9	1530
1600	1852	1606	1767	22	10	1700
1700	1952	1706	1867	22	10	1700
1800	2052	1806	1967	24	11	1870
1900	2152	1906	2067	24	11	1870
2000	2252	2006	2167	26	12	2040

Note 1）When mounting the actuator using the body mounting reference plane， set the height of the opposite surface or pin to be 3 mm or more because of round chamfering．（Recommended height 5 mm ）
Note 2）Distance within which the table can move when it returns to origin．Make sure a workpiece mounted on the table does not interfere with the work pieces and facilities around the table．
Note 3）The Z－phase first detecting position from the stroke end of the motor side

Series LEFB

AC Servo Motor

Dimensions: Belt Drive
LEFB32/Motor top mounting type

Motor option: With lock

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	590	306	430	6	2	400
400	690	406	530	6	2	400
500	790	506	630	8	3	600
600	890	606	730	8	3	600
700	990	706	830	10	4	800
800	1090	806	930	10	4	800
900	1190	906	1030	12	5	1000
1000	1290	1006	1130	12	5	1000
1100	1390	1106	1230	14	6	1200
1200	1490	1206	1330	14	6	1200
1300	1590	1306	1430	16	7	1400
1400	1690	1406	1530	16	7	1400
1500	1790	1506	1630	18	8	1600
1600	1890	1606	1730	18	8	1600
1700	1990	1706	1830	20	9	1800
1800	2090	1806	1930	20	9	1800
1900	2190	1906	2030	22	10	2000
2000	2290	2006	2130	22	10	2000
2500	2790	2506	2630	28	13	2600

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of round chamfering. (Recommended height 5 mm)
Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the work pieces and facilities around the table.
Note 3) The Z-phase first detecting position from the stroke end of the motor side

Electric Actuator／Slider Type

Dimensions：Belt Drive

LEFB32U／Motor bottom mounting type

Motor option：With lock

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	590	306	430	6	2	400
400	690	406	530	6	2	400
500	790	506	630	8	3	600
600	890	606	730	8	3	600
700	990	706	830	10	4	800
800	1090	806	930	10	4	800
900	1190	906	1030	12	5	1000
1000	1290	1006	1130	12	5	1000
1100	1390	1106	1230	14	6	1200
1200	1490	1206	1330	14	6	1200
1300	1590	1306	1430	16	7	1400
1400	1690	1406	1530	16	7	1400
1500	1790	1506	1630	18	8	1600
1600	1890	1606	1730	18	8	1600
1700	1990	1706	1830	20	9	1800
1800	2090	1806	1930	20	9	1800
1900	2190	1906	2030	22	10	2000
2000	2290	2006	2130	22	10	2000
2500	2790	2506	2630	28	13	2600

Note 1）When mounting the actuator using the body mounting reference plane， set the height of the opposite surface or pin to be 3 mm or more because of round chamfering．（Recommended height 5 mm ）
Note 2）Distance within which the table can move when it returns to origin．Make sure a workpiece mounted on the table does not interfere with the work pieces and facilities around the table．
Note 3）The Z－phase first detecting position from the stroke end of the motor side

Series LEFB

AC Servo Motor

Dimensions: Belt Drive

LEFB40/Motor top mounting type

Motor option: With lock

Note 1) When mounting the actuator using the body mounting reference plane, set the height of the opposite surface or pin to be 3 mm or more because of round chamfering. (Recommended height 5 mm)

Dimensions						
Stroke	\mathbf{L}	\mathbf{A}	\mathbf{B}	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	641.5	306	478	6	2	400
400	741.5	406	578	6	2	400
500	841.5	506	678	8	3	600
600	941.5	606	778	8	3	600
700	1041.5	706	878	10	4	800
800	1141.5	806	978	10	4	800
900	1241.5	906	1078	12	5	1000
1000	1341.5	1006	1178	12	5	1000
1100	1441.5	1106	1278	14	6	1200
1200	1541.5	1206	1378	14	6	1200
1300	1641.5	1306	1478	16	7	1400
1400	1741.5	1406	1578	16	7	1400
1500	1841.5	1506	1678	18	8	1600
1600	1941.5	1606	1778	18	8	1600
1700	2041.5	1706	1878	20	9	1800
1800	2141.5	1806	1978	20	9	1800
1900	2241.5	1906	2078	22	10	2000
2000	2341.5	2006	2178	22	10	2000
2500	2841.5	2506	2678	28	13	2600
3000	3341.5	3006	3178	32	15	3000

Note 2) Distance within which the table can move when it returns to origin. Make sure a workpiece mounted on the table does not interfere with the work pieces and facilities around the table.
Note 3) The Z-phase first detecting position from the stroke end of the motor side

Dimensions：Belt Drive

LEFB40U／Motor bottom mounting type

Motor option：With lock

Dimensions						
Stroke	\mathbf{L}	A	B	\mathbf{n}	\mathbf{D}	\mathbf{E}
300	641.5	306	478	6	2	400
400	741.5	406	578	6	2	400
500	841.5	506	678	8	3	600
600	941.5	606	778	8	3	600
700	1041.5	706	878	10	4	800
800	1141.5	806	978	10	4	800
900	1241.5	906	1078	12	5	1000
1000	1341.5	1006	1178	12	5	1000
1100	1441.5	1106	1278	14	6	1200
1200	1541.5	1206	1378	14	6	1200
1300	1641.5	1306	1478	16	7	1400
1400	1741.5	1406	1578	16	7	1400
1500	1841.5	1506	1678	18	8	1600
1600	1941.5	1606	1778	18	8	1600
1700	2041.5	1706	1878	20	9	1800
1800	2141.5	1806	1978	20	9	1800
1900	2241.5	1906	2078	22	10	2000
2000	2341.5	2006	2178	22	10	2000
2500	2841.5	2506	2678	28	13	2600
3000	3341.5	3006	3178	32	15	3000

Note 1）When mounting the actuator using the body mounting reference plane， set the height of the opposite surface or pin to be 3 mm or more because of round chamfering．（Recommended height 5 mm ）
Note 2）Distance within which the table can move when it returns to origin．Make sure a workpiece mounted on the table does not interfere with the work pieces and facilities around the table．
Note 3）The Z－phase first detecting position from the stroke end of the motor side

Series LEF

Electric Actuator/

 Specific Product Precautions 1Be sure to read this before handling. Refer to page 906 for Safety Instructions. For Electric Actuator Precautions, refer to pages 907 to 912, or "Handling Precautions for SMC Products" and the Operation Manual on SMC website, http://www.smcworld.com

Design

\triangle Caution

1. Do not apply a load in excess of the specification limits.

Select a suitable actuator by work load and allowable moment. If the product is used outside of the specification limits, the eccentric load applied to the guide will be excessive and have adverse effects such as creating play on the guide, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause a failure.

Selection

© Warning

1. Do not increase the speed in excess of the specification limits.
Select a suitable actuator by the relationship between the allowable work load and speed, and the allowable speed of each stroke. If the product is used outside of the specification limits, it will have adverse effects such as creating noise, degrading accuracy and shortening the life of the product.
2. Do not use the product in applications where excessive external force or impact force is applied to it.
This can cause a failure.
3. When the product repeatedly cycles with partial strokes (see the table below), operate it at a full stroke at least once every dozens of cycles.
Otherwise, lubrication can run out.

Model	Partial stroke
LEFS25	65 mm or less
LEFS32	70 mm or less
LEFS40	105 mm or less

4. When external force is applied to the table, it is necessary to add external force to the work load as the total carried load for the sizing.
When a cable duct or flexible moving tube is attached to the actuator, the sliding resistance of the table increases and may lead to operational failure of the product.
5. The forward/reverse torque limit is set to $\mathbf{8 0 0 \%}$ as default.
When the product is operated with a smaller value than 300%, acceleration when driving can decrease. Set the value after confirming the actual device to be used.

Handling

\triangle Caution

1. Do not allow the table to hit the end of stroke.

When incorrect instructions are inputted, such as using the product outside of the specification limits or operation outside of actual stroke through changes in the controller/driver setting and/or origin position, the table may collide against the stroke end of the actuator. Check these points before use.
If the table collides against the stroke end of the actuator, the guide, belt or internal stopper can be broken. This may lead to abnormal operation.

Handle the actuator with care when it is used in the vertical direction as the workpiece will fall freely from its own weight.
2. The actual speed of this actuator is affected by the work load and stroke.

Check the specifications with reference to the model selection section of the catalog
3. Do not apply a load, impact or resistance in addition to the transferred load during return to origin.
4. Do not dent, scratch or cause other damage to the body and table mounting surfaces.
This may cause unevenness in the mounting surface, play in the guide or an increase in the sliding resistance.
5. Do not apply strong impact or an excessive moment while mounting a workpiece.

If an external force over the allowable moment is applied, it may cause play in the guide or an increase in the sliding resistance.
6. Keep the flatness of mounting surface $0.1 \mathbf{~ m m}$ or less.

Unevenness of a workpiece or base mounted on the body of the product may cause play in the guide and an increase in the sliding resistance.
7. When mounting the product, keep a 40 mm or longer diameter for bends in the cable.
8. Do not hit the table with the workpiece in the positioning operation and positioning range.
9. Grease is applied to the dust seal band for sliding. When wiping off the grease to remove foreign matter etc., be sure to apply it again.
10. For bottom mounting, the dust seal band may be deflected.

Series LEF
 Electric Actuator／ Specific Product Precautions 2

\triangle
Be sure to read this before handling．Refer to page 906 for Safety Instructions．For Electric Actuator Precautions，refer to pages 907 to 912，or＂Handling Precautions for SMC Products＂and the Operation Manual on SMC website，http：／／www．smcworld．com

Handling

\triangle Caution

11．When mounting the product，use screws with adequate length and tighten them with adequate torque．
Tightening the screws with a higher torque than recommended may cause a malfunction，whilst the tightening with a lower torque can cause the displacement of the mounting position or in extreme conditions the actuator could become detached from its mounting position．

The traveling parallelism is the reference plane for the body mounting reference plane．If the traveling parallelism for a table is required，set the reference plane against positioning pins etc．

Workpiece fixed

Model	Screw size	Max．tightening torque $[\mathrm{N} \cdot \mathrm{m}]$	$\mathrm{L}($ Max．screw－in					
depth）$[\mathrm{mm}]$				$	$	LEF $\square \mathbf{2 5}$	M5 $\times 0.8$	3.0
:---:	:---:	:---:						
LEF $\square \mathbf{3 2}$	M6 $\times 1$	5.2						
LEF $\square \mathbf{4 0}$	M8 $\times 1.25$	12.5						

To prevent the workpiece retaining screws from touching the body，use screws that are 0.5 mm or shorter than the maximum screw－in depth．If long screws are used，they can touch the body and cause a malfunction etc

12．Do not operate by fixing the table and moving the actuator body．
13．Check the specifications for the minimum speed of each actuator． Otherwise，unexpected malfunctions，such as knocking，may occur．

14．The belt drive actuator cannot be used vertically for applications．

Maintenance

\triangle Warning

Maintenance frequency

Perform maintenance according to the table below．

Frequency	Appearance check	Internal check
Inspection before daily operation	\bigcirc	-
Inspection every 6 months／1000 km／ 5 million cycles＊	\bigcirc	\bigcirc

＊Select whichever comes first．
－Items for visual appearance check
1．Loose set screws，Abnormal dirt
2．Check of flaw and cable joint
3．Vibration，Noise
－Items for internal check
1．Lubricant condition on moving parts．
2．Loose or mechanical play in fixed parts or fixing screws．

がM

를

[^0]: * Battery included.

[^1]: ＊1 USB communication and RS422 communication cannot be performed at the same time．

[^2]: * The LECSS2-T \square cannot be used with the LEC-MR-SETUP221 \square.

[^3]: * Please consult with SMC for non-standard strokes as they are produced as special orders.

[^4]: ＊When using the dust－tight／water－jet－proof（IP65 equivalent），correctly mount the fitting and tubing to the vent hole tap，and then place the end of the tubing in an area not exposed to dust or water．The fitting and tubing should be provided separately by the customer．

[^5]: * Please consult with SMC for non-standard strokes as they are produced as special orders.

[^6]: ＊LE－CSNA：10126－3000PE（connector）／10326－52F0－008（shell kit） manufactured by Sumitomo 3M Limited or equivalent item． LE－CSNB：10150－3000PE（connector）／10350－52F0－008（shell kit） manufactured by Sumitomo 3M Limited or equivalent item． LE－CSNS：10120－3000PE（connector）／10320－52F0－008（shell kit） manufactured by Sumitomo 3M Limited or equivalent item．
 ＊Applicable conductor size：AWG24 to 30

