

X-RING

Informazioni generali

Gli X-ring sono guarnizioni a quattro lobi con un profilo di tenuta particolare. Una vasta gamma di materiali elastomerici per applicazioni sia standard che non, consente di avere una tenuta praticamente per tutti i liquidi e i gas. A differenza dell'O-ring l'X-ring richiede un minore schiacciamento iniziale, il che comporta un minore attrito nel caso di applicazioni dinamiche. Gli X-ring vengono prevalentemente impiegati come tenute dinamiche. Il loro impiego è sempre limitato dalla pressione e dalla velocità.

Vantaggi dell'X-ring rispetto all'O-ring:

- evita l'attorcigliamento nella cava durante il montaggio
- minore attrito poiché l'X-ring richiede un minor schiacciamento rispetto all'0-ring
- eccellente tenuta. Grazie al profilo sotto pressione si ottiene un elevato effetto tenuta
- il serbatoio che si forma fra i labbri di tenuta favorisce l'avviamento

Applicazioni rotanti

Nelle applicazioni per alberi rotanti è necessario che la tenuta venga montata seguendo delle specifiche relative al principio della tenuta rotante. Tale principio si basa sul fatto che un anello elastomerico allungato si contrae quando è caldo. Seguendo il normale metodo di installazione (d interno anello<diametro albero), l'attrito sviluppato fa si che la guarnizione si contragga ulteriormente. Ciò comporta una maggiore pressione dell'anello sull'albero rotante, evitando la formazione del film lubrificante sotto la guarnizione. Si avrà quindi una maggiore usura ed un decadimento prematuro della tenuta. Per evitare questo si sceglierà una tenuta con un diametro interno 2-5 % più largo dell'albero. Montato in cava l'anello di tenuta viene compresso radialmente e premuto contro l'albero dal fondo della cava. In tal modo risulta leggermente ondulato, il che migliora la lubrificazione.

Dati tecnici

DATI TECNICI								
Tipo applicaz.	Pression Antiest		Velocità m/sec	Temp. °C compound				
	SI	NO		Standard	Speciali			
Alternativo	300	50	0,5	-30 +110	-60 +200			
Statico	400	50	-	-30 +110	-60 +200			
Rotativo	150	30	2,0*	-30 +80	-			

Rugosità circolare

Tipo di carico	Superficie	R _{max} µm	R _z µm	R _a µm
Radiale	Superficie di scorrimento (alesaggio, stelo, albero)	1,0-2,5	0,63-1,6	0,1-0,4
dinamico	Superficie della cava (interno fianchi)	≤ 16,0	≤ 10,0	≤ 1,6
Radiale statico	Superficie di scorrimento Superficie della cava	≤ 10,0 ≤ 16,0	≤ 6,3 ≤ 10,0	≤ 1,6 ≤ 3,2
Assiale statico	Pressione pulsanti: Superficie di scorrimento - Superficie della cava	≤6,3 ≤10,0	≤ 4,0 ≤ 6,3	≤ 0,8 ≤ 1,6

Materiali

Campo di applicazione e caratteristiche	Materiale	Campo termico (°C)
Materiale standard per sistemi idraulici e pneumatici. Fluidi idraulici minerali a base d'olio, olii e grassi animali e vegetali. Liquidi antideflagranti (HFA, HFB, HFC), idrocarburi alifatici (propano, butano, petrolio), olii e grassi a base silicone. Acqua fino a + 80°C, aria.	NBR	-30 +100
Olii e grassi minerali idrocarburi alifatici, aromatici e clorurati, benzina, gasolio, liquidi antideflagranti a base di fosfati. Olii e grassi a base di silicone. Acidi, soluzioni alcaline. Adatto per l'impiego sottovuoto.	FKM	-20 +200
Acqua calda, vapore, liquidi per freni, detergenti. Alcool, chetoni, refrigeranti motore, liquidi antideflagranti a base di fosfati, acidi e basi organici e inorganici. Non resiste agli olii minerali.	EPDM	-45 +140
Aria calda, ossigeno, gas inerti ad elevate temperature, ozono, raggi UV, oliialifatici per motori e trasmissioni, grassi ed olii animali e vegetali, liquidi per freni. Bassa resistenza agli olii minerali. Solo per applicazioni statiche.	VMQ	-55 +200
Fluidi idraulici minerali a base d'olio, olii e grassi animali e vegetali. Liquidi antideflagranti (HFA, HFB, HFC), idrocarburi alifatici. Olii a base di silicone. Acqua fino a +80°C, aria. Bioolii in estere sintetica e olii vegetali.	HNBR	-30 +150

Schema per dimensionare la sede

	Profondità sede		d3 h9		d6 H9		b1-b4	b2	b3	r1	S	h
W	Dinamico	Statico	Dia	Ctation	Din	Ctation		. 0 0	. 0 0			. 0.05
	t	h	Din.	Statico	Din.	Statico	+0,2	+0,2	+0,2			+0,05
1,78	1,5	1,4	d4- 3,0	d4- 2,8	d5+ 3,0	d5+ 2,8	2,0	3,4	4,8	0,22	0,050	1,40
2,62	2,3	2,25	d4- 4,6	d4- 4,5	d5+ 4,6	d5+ 4,5	3,0	4,4	5,8	0,30	0,080	2,25
3,53	3,2	3,10	d4- 6,4	d4- 6,2	d5+ 6,4	d5+ 6,2	4,0	5,4	6,8	0,40	0,080	3,10
5,33	4,9	4,75	d4- 9,8	d4- 9,5	d5+ 9,8	d5+ 9,5	6,0	7,7	9,4	0,40	0,100	4,75
7,00	6,4	6,20	d4- 12,8	d4 -12,4	d5+ 12,8	d5 +12,4	8,0	10,5	13,0	0,60	0,100	6,20

Profondità cava per X-ring FKM

Per gli elastomeri con una maggiore possibilità di ritiro durante la lavorazione, tipo Silicone o Viton, si deve diminuire la profondità radiale della cava.

W	d3	h9	d6 H9			
	Dinamico Statico		Dinamico	Statico		
1,78	d4- 2,9	d4- 2,7	d5+ 2,9	d5+ 2,7		
2,62	d4- 4,5	d4- 4,4	d5+ 4,5	d5+ 4,4		
3,53	d4- 6,3	d4- 6,0	d5+ 6,3	d5+ 6,0		
5,33	d4- 9,5	d4- 9,0	d5+ 9,5	d5+ 9,0		
7,00	d4- 12,4	d4-12,0	d5+ 12,4	d5+ 12,0		

Le informazioni tecniche riportate non possono costituire garanzia assoluta a causa delle molteplici variabili che influenzano le condizioni di impiego.

PNEUMAC srl

Sede: Viale Italia, 254 - 31015 Conegliano (TV) Tel. 0438/35005 r.a. fax 0438/410211 C.F. e PARTITA IVA 00578770265